通过模仿专家和数值优化开发自主挖掘机回填任务中的高效轨迹规划算法

Pub Date : 2024-04-20 DOI:10.20965/jrm.2024.p0263
Ryuji Tsuzuki, Kosuke Hara, Dotaro Usui
{"title":"通过模仿专家和数值优化开发自主挖掘机回填任务中的高效轨迹规划算法","authors":"Ryuji Tsuzuki, Kosuke Hara, Dotaro Usui","doi":"10.20965/jrm.2024.p0263","DOIUrl":null,"url":null,"abstract":"The objective of this study is to achieve high efficiency in autonomous hydraulic excavators by imitating the bucket trajectory operated by an expert. For this purpose, bucket trajectories of experts were collected, and a trajectory was planned using machine learning of a model that relates measured soil shapes to the bucket trajectories of the experts. In this study, we proposed a hierarchical model consisting of a model for estimating movement and a trajectory, with a focus on the fact that different trajectories are generated for the same soil shape as a result of the analysis of the skilled persons’ movements. The trajectory output from the model was replanned to have a smooth trajectory using numerical optimization. For the backfilling task, the error from the target shape and the amount of soil transported per movement were compared with those of an expert. The proposed method increased the error from the target shape by approximately 66%, while the amount of soil transported was approximately 58% of that of the experts.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Highly Efficient Trajectory Planning Algorithm in Backfilling Task for Autonomous Excavators by Imitation of Experts and Numerical Optimization\",\"authors\":\"Ryuji Tsuzuki, Kosuke Hara, Dotaro Usui\",\"doi\":\"10.20965/jrm.2024.p0263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to achieve high efficiency in autonomous hydraulic excavators by imitating the bucket trajectory operated by an expert. For this purpose, bucket trajectories of experts were collected, and a trajectory was planned using machine learning of a model that relates measured soil shapes to the bucket trajectories of the experts. In this study, we proposed a hierarchical model consisting of a model for estimating movement and a trajectory, with a focus on the fact that different trajectories are generated for the same soil shape as a result of the analysis of the skilled persons’ movements. The trajectory output from the model was replanned to have a smooth trajectory using numerical optimization. For the backfilling task, the error from the target shape and the amount of soil transported per movement were compared with those of an expert. The proposed method increased the error from the target shape by approximately 66%, while the amount of soil transported was approximately 58% of that of the experts.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2024.p0263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2024.p0263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过模仿专家操作的铲斗轨迹,实现自主液压挖掘机的高效率。为此,我们收集了专家的铲斗轨迹,并通过机器学习将测量到的土壤形状与专家的铲斗轨迹联系起来的模型来规划轨迹。在这项研究中,我们提出了一个由运动估算模型和轨迹模型组成的分层模型,重点是通过对技术人员的运动进行分析,为相同的土壤形状生成不同的轨迹。通过数值优化,对模型输出的轨迹进行了重新规划,以获得平滑的轨迹。在回填任务中,目标形状的误差和每次移动的土壤运输量与专家的误差进行了比较。建议的方法使目标形状误差增加了约 66%,而土壤运输量约为专家的 58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Development of a Highly Efficient Trajectory Planning Algorithm in Backfilling Task for Autonomous Excavators by Imitation of Experts and Numerical Optimization
The objective of this study is to achieve high efficiency in autonomous hydraulic excavators by imitating the bucket trajectory operated by an expert. For this purpose, bucket trajectories of experts were collected, and a trajectory was planned using machine learning of a model that relates measured soil shapes to the bucket trajectories of the experts. In this study, we proposed a hierarchical model consisting of a model for estimating movement and a trajectory, with a focus on the fact that different trajectories are generated for the same soil shape as a result of the analysis of the skilled persons’ movements. The trajectory output from the model was replanned to have a smooth trajectory using numerical optimization. For the backfilling task, the error from the target shape and the amount of soil transported per movement were compared with those of an expert. The proposed method increased the error from the target shape by approximately 66%, while the amount of soil transported was approximately 58% of that of the experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1