基于线性结构光的焊接机器人手眼自动校准方法

Pub Date : 2024-04-20 DOI:10.20965/jrm.2024.p0438
Dongmin Li, Wang Yu, Wenping Ma, Xiujie Liu, Guowei Ding, Guohui Zhang, Fang Jiaqi
{"title":"基于线性结构光的焊接机器人手眼自动校准方法","authors":"Dongmin Li, Wang Yu, Wenping Ma, Xiujie Liu, Guowei Ding, Guohui Zhang, Fang Jiaqi","doi":"10.20965/jrm.2024.p0438","DOIUrl":null,"url":null,"abstract":"Aiming at solving the problems such as long calibration time, low precision, and complex operation in hand-eye calibration of welding robot, an automatic hand-eye calibration algorithm based on linear structured light was proposed to solve the calibration matrix X by using AX=ZB calibration equation. Firstly, a square calibration plate is customized to effectively constrain the structured light. The α-shape algorithm was adopted to extract the contour of the 3D point cloud model of the calibration plate. Secondly, an improved random sampling consistency algorithm which could determine the optimal iterative number was proposed to fit the contour point cloud, the contour point cloud model fitted was obtained. Finally, the 3D coordinates of the target points were determined with the linear structured light to complete the hand-eye calibration. In order to prevent the calibration plate from deviating from the acquisition range of the vision sensor during the calibration process, the distance between the linear structural light and the inner circle in the calibration plate was set to limit the motion range of the robot. In order to eliminate the error transfer of the robot body, an optimal solution of the rotation matrix R and the translation vector t of the calibration data was calculated with the singular value decomposition (SVD) and the least square rigid transpose method. The experimental results show that the calibration accuracy reaches 0.3 mm without compensating the robot body error, and the calibration speed is improved by 36% than the existing automatic calibration method. Therefore, the algorithm proposed can automatically complete the calibration only by establishing the user coordinates in advance, which improves the working accuracy and efficiency of the welding robots greatly.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Hand-Eye Calibration Method of Welding Robot Based on Linear Structured Light\",\"authors\":\"Dongmin Li, Wang Yu, Wenping Ma, Xiujie Liu, Guowei Ding, Guohui Zhang, Fang Jiaqi\",\"doi\":\"10.20965/jrm.2024.p0438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at solving the problems such as long calibration time, low precision, and complex operation in hand-eye calibration of welding robot, an automatic hand-eye calibration algorithm based on linear structured light was proposed to solve the calibration matrix X by using AX=ZB calibration equation. Firstly, a square calibration plate is customized to effectively constrain the structured light. The α-shape algorithm was adopted to extract the contour of the 3D point cloud model of the calibration plate. Secondly, an improved random sampling consistency algorithm which could determine the optimal iterative number was proposed to fit the contour point cloud, the contour point cloud model fitted was obtained. Finally, the 3D coordinates of the target points were determined with the linear structured light to complete the hand-eye calibration. In order to prevent the calibration plate from deviating from the acquisition range of the vision sensor during the calibration process, the distance between the linear structural light and the inner circle in the calibration plate was set to limit the motion range of the robot. In order to eliminate the error transfer of the robot body, an optimal solution of the rotation matrix R and the translation vector t of the calibration data was calculated with the singular value decomposition (SVD) and the least square rigid transpose method. The experimental results show that the calibration accuracy reaches 0.3 mm without compensating the robot body error, and the calibration speed is improved by 36% than the existing automatic calibration method. Therefore, the algorithm proposed can automatically complete the calibration only by establishing the user coordinates in advance, which improves the working accuracy and efficiency of the welding robots greatly.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2024.p0438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2024.p0438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对焊接机器人手眼标定中存在的标定时间长、精度低、操作复杂等问题,提出了一种基于线性结构光的手眼自动标定算法,利用 AX=ZB 标定方程求解标定矩阵 X。首先,定制一个方形校准板以有效约束结构光。采用 α 形算法提取校准板三维点云模型的轮廓。其次,提出了一种能确定最佳迭代次数的改进随机抽样一致性算法来拟合轮廓点云,得到了拟合的轮廓点云模型。最后,利用线性结构光确定目标点的三维坐标,完成手眼校准。为了防止校准板在校准过程中偏离视觉传感器的采集范围,设置了线性结构光与校准板内圆之间的距离,以限制机器人的运动范围。为了消除机器人本体的误差传递,利用奇异值分解法(SVD)和最小平方刚性转置法计算出了标定数据的旋转矩阵 R 和平移矢量 t 的最优解。实验结果表明,在不补偿机器人本体误差的情况下,校准精度达到了 0.3 毫米,校准速度比现有自动校准方法提高了 36%。因此,所提出的算法只需提前建立用户坐标就能自动完成标定,大大提高了焊接机器人的工作精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Automatic Hand-Eye Calibration Method of Welding Robot Based on Linear Structured Light
Aiming at solving the problems such as long calibration time, low precision, and complex operation in hand-eye calibration of welding robot, an automatic hand-eye calibration algorithm based on linear structured light was proposed to solve the calibration matrix X by using AX=ZB calibration equation. Firstly, a square calibration plate is customized to effectively constrain the structured light. The α-shape algorithm was adopted to extract the contour of the 3D point cloud model of the calibration plate. Secondly, an improved random sampling consistency algorithm which could determine the optimal iterative number was proposed to fit the contour point cloud, the contour point cloud model fitted was obtained. Finally, the 3D coordinates of the target points were determined with the linear structured light to complete the hand-eye calibration. In order to prevent the calibration plate from deviating from the acquisition range of the vision sensor during the calibration process, the distance between the linear structural light and the inner circle in the calibration plate was set to limit the motion range of the robot. In order to eliminate the error transfer of the robot body, an optimal solution of the rotation matrix R and the translation vector t of the calibration data was calculated with the singular value decomposition (SVD) and the least square rigid transpose method. The experimental results show that the calibration accuracy reaches 0.3 mm without compensating the robot body error, and the calibration speed is improved by 36% than the existing automatic calibration method. Therefore, the algorithm proposed can automatically complete the calibration only by establishing the user coordinates in advance, which improves the working accuracy and efficiency of the welding robots greatly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1