揭示异常:通过智能异常检测增强视频监控能力

Dikshendra Sarpate, Isha Tadas, Radhesh Khaire, Mokshad Antapurkar, Amisha Sonone
{"title":"揭示异常:通过智能异常检测增强视频监控能力","authors":"Dikshendra Sarpate, Isha Tadas, Radhesh Khaire, Mokshad Antapurkar, Amisha Sonone","doi":"10.32628/ijsrset2411248","DOIUrl":null,"url":null,"abstract":"Video surveillance has become a cornerstone of security for public spaces and private property. However, the effectiveness of this approach is hampered by the limitations of manual monitoring. Human analysts face challenges such as fatigue, distraction, and the sheer volume of video data, leading to missed incidents and inefficient use of resources. This research project proposes a revolutionary solution: intelligent anomaly detection through artificial intelligence (AI). This system transcends the constraints of human observation by automatically identifying deviations from established patterns within video footage. The core concept lies in leveraging the power of AI to analyze various aspects of video data. This includes movement analysis, object recognition, and scene dynamics. Through this comprehensive approach, the system can detect anomalous events that might escape human notice – activities such as loitering, intrusions, or suspicious behavior. This project delves into the design and development of this intelligent anomaly detection system. It explores the vast potential of machine learning techniques, specifically focusing on unsupervised learning and deep learning algorithms. These algorithms play a crucial role in modeling normal behavior within video data. The system then utilizes these models to identify deviations that fall outside the established patterns. By flagging these anomalies, the system empowers security personnel to prioritize their attention on critical events. This significantly enhances overall security efficiency by allowing human analysts to focus on investigating the most relevant situations. This research project seeks to contribute significantly to the advancement of video surveillance technology. By harnessing the power of AI and machine learning, this intelligent anomaly detection system offers a promising approach to enhancing security in public spaces and private property.","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Anomaly : Empowering Video Surveillance through Intelligent Anomaly Detection\",\"authors\":\"Dikshendra Sarpate, Isha Tadas, Radhesh Khaire, Mokshad Antapurkar, Amisha Sonone\",\"doi\":\"10.32628/ijsrset2411248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video surveillance has become a cornerstone of security for public spaces and private property. However, the effectiveness of this approach is hampered by the limitations of manual monitoring. Human analysts face challenges such as fatigue, distraction, and the sheer volume of video data, leading to missed incidents and inefficient use of resources. This research project proposes a revolutionary solution: intelligent anomaly detection through artificial intelligence (AI). This system transcends the constraints of human observation by automatically identifying deviations from established patterns within video footage. The core concept lies in leveraging the power of AI to analyze various aspects of video data. This includes movement analysis, object recognition, and scene dynamics. Through this comprehensive approach, the system can detect anomalous events that might escape human notice – activities such as loitering, intrusions, or suspicious behavior. This project delves into the design and development of this intelligent anomaly detection system. It explores the vast potential of machine learning techniques, specifically focusing on unsupervised learning and deep learning algorithms. These algorithms play a crucial role in modeling normal behavior within video data. The system then utilizes these models to identify deviations that fall outside the established patterns. By flagging these anomalies, the system empowers security personnel to prioritize their attention on critical events. This significantly enhances overall security efficiency by allowing human analysts to focus on investigating the most relevant situations. This research project seeks to contribute significantly to the advancement of video surveillance technology. By harnessing the power of AI and machine learning, this intelligent anomaly detection system offers a promising approach to enhancing security in public spaces and private property.\",\"PeriodicalId\":14228,\"journal\":{\"name\":\"International Journal of Scientific Research in Science, Engineering and Technology\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Science, Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/ijsrset2411248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2411248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频监控已成为公共场所和私人财产安全的基石。然而,人工监控的局限性阻碍了这种方法的有效性。人工分析人员面临着疲劳、分心和视频数据量过大等挑战,导致遗漏事件和资源利用效率低下。本研究项目提出了一种革命性的解决方案:通过人工智能(AI)进行智能异常检测。该系统通过自动识别视频片段中与既定模式的偏差,超越了人工观察的限制。其核心理念在于利用人工智能的力量来分析视频数据的各个方面。这包括动作分析、物体识别和场景动态。通过这种综合方法,系统可以检测到可能不被人类注意到的异常事件,如闲逛、入侵或可疑行为。本项目深入研究了这一智能异常检测系统的设计和开发。它探索了机器学习技术的巨大潜力,尤其侧重于无监督学习和深度学习算法。这些算法在为视频数据中的正常行为建模方面发挥着至关重要的作用。然后,系统利用这些模型来识别超出既定模式的偏差。通过标记这些异常情况,系统可使安全人员优先关注关键事件。这样,人工分析人员就可以集中精力调查最相关的情况,从而大大提高整体安全效率。本研究项目旨在为视频监控技术的进步做出重大贡献。通过利用人工智能和机器学习的力量,该智能异常检测系统为加强公共场所和私人财产的安全提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling Anomaly : Empowering Video Surveillance through Intelligent Anomaly Detection
Video surveillance has become a cornerstone of security for public spaces and private property. However, the effectiveness of this approach is hampered by the limitations of manual monitoring. Human analysts face challenges such as fatigue, distraction, and the sheer volume of video data, leading to missed incidents and inefficient use of resources. This research project proposes a revolutionary solution: intelligent anomaly detection through artificial intelligence (AI). This system transcends the constraints of human observation by automatically identifying deviations from established patterns within video footage. The core concept lies in leveraging the power of AI to analyze various aspects of video data. This includes movement analysis, object recognition, and scene dynamics. Through this comprehensive approach, the system can detect anomalous events that might escape human notice – activities such as loitering, intrusions, or suspicious behavior. This project delves into the design and development of this intelligent anomaly detection system. It explores the vast potential of machine learning techniques, specifically focusing on unsupervised learning and deep learning algorithms. These algorithms play a crucial role in modeling normal behavior within video data. The system then utilizes these models to identify deviations that fall outside the established patterns. By flagging these anomalies, the system empowers security personnel to prioritize their attention on critical events. This significantly enhances overall security efficiency by allowing human analysts to focus on investigating the most relevant situations. This research project seeks to contribute significantly to the advancement of video surveillance technology. By harnessing the power of AI and machine learning, this intelligent anomaly detection system offers a promising approach to enhancing security in public spaces and private property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UGC Guidelines on Sustainable and Vibrant University- Industry Linkage System for Indian Universities, 2024 Leachate as a Fertilizer Artificial Intelligence in Healthcare : A Review Advancements in Quadcopter Development through Additive Manufacturing: A Comprehensive Review Sensing Human Emotion using Emerging Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1