抗糖尿病药物研发中的 1,3,4-恶二唑支架:概述。

IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Mini reviews in medicinal chemistry Pub Date : 2024-04-19 DOI:10.2174/0113895575298181240410041029
Ojasvi Gupta, Gita Chawla, Tathagata Pradhan
{"title":"抗糖尿病药物研发中的 1,3,4-恶二唑支架:概述。","authors":"Ojasvi Gupta, Gita Chawla, Tathagata Pradhan","doi":"10.2174/0113895575298181240410041029","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. With the increasing number of cases of diabetes and drug-resistant diabetes, there is an urgent need to develop new potent molecules capable of combating this cruel disease. Medicinal chemistry concerns the discovery, development, identification, and interpretation of the mode of action of biologically active compounds at the molecular level. Oxadiazole-based derivatives have come up as a potential option for antidiabetic drug research. Oxadiazole is a five-membered heterocyclic organic compound containing two nitrogen atoms and one oxygen atom in its ring. Oxadiazole hybrids have shown the ability to improve glucose tolerance, enhance insulin sensitivity, and reduce fasting blood glucose levels. The mechanisms underlying the antidiabetic effects of oxadiazole involve the modulation of molecular targets such as peroxisome proliferator-activated receptor gamma (PPARγ), α-glucosidase, α-amylase and GSK-3β which regulate glucose metabolism and insulin secretion. The present review article describes the chemical structure and properties of oxadiazoles and highlights the antidiabetic activity through action on different targets. The SAR for the oxadiazole hybrids has been discussed in this article, which will pave the way for the design and development of new 1,3,4-oxadiazole derivatives as promising antidiabetic agents in the future. We expect that this article will provide comprehensive knowledge and current innovation on oxadiazole derivatives with antidiabetic potential and will fulfil the needs of the scientific community in designing and developing efficacious antidiabetic agents.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1,3,4-Oxadiazole Scaffold in Antidiabetic Drug Discovery: An Overview.\",\"authors\":\"Ojasvi Gupta, Gita Chawla, Tathagata Pradhan\",\"doi\":\"10.2174/0113895575298181240410041029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. With the increasing number of cases of diabetes and drug-resistant diabetes, there is an urgent need to develop new potent molecules capable of combating this cruel disease. Medicinal chemistry concerns the discovery, development, identification, and interpretation of the mode of action of biologically active compounds at the molecular level. Oxadiazole-based derivatives have come up as a potential option for antidiabetic drug research. Oxadiazole is a five-membered heterocyclic organic compound containing two nitrogen atoms and one oxygen atom in its ring. Oxadiazole hybrids have shown the ability to improve glucose tolerance, enhance insulin sensitivity, and reduce fasting blood glucose levels. The mechanisms underlying the antidiabetic effects of oxadiazole involve the modulation of molecular targets such as peroxisome proliferator-activated receptor gamma (PPARγ), α-glucosidase, α-amylase and GSK-3β which regulate glucose metabolism and insulin secretion. The present review article describes the chemical structure and properties of oxadiazoles and highlights the antidiabetic activity through action on different targets. The SAR for the oxadiazole hybrids has been discussed in this article, which will pave the way for the design and development of new 1,3,4-oxadiazole derivatives as promising antidiabetic agents in the future. We expect that this article will provide comprehensive knowledge and current innovation on oxadiazole derivatives with antidiabetic potential and will fulfil the needs of the scientific community in designing and developing efficacious antidiabetic agents.\",\"PeriodicalId\":18548,\"journal\":{\"name\":\"Mini reviews in medicinal chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini reviews in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113895575298181240410041029\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575298181240410041029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是 21 世纪科学界面临的最大挑战之一。随着糖尿病和耐药性糖尿病病例的不断增加,迫切需要开发新的强效分子来对抗这种残酷的疾病。药物化学涉及生物活性化合物在分子水平上的发现、开发、鉴定和作用模式的解释。噁二唑类衍生物已成为抗糖尿病药物研究的潜在选择。噁二唑是一种五元杂环有机化合物,环中含有两个氮原子和一个氧原子。噁二唑混合物已显示出改善葡萄糖耐量、增强胰岛素敏感性和降低空腹血糖水平的能力。恶二唑抗糖尿病作用的机制涉及调节分子靶点,如调节葡萄糖代谢和胰岛素分泌的过氧化物酶体增殖激活受体γ(PPARγ)、α-葡萄糖苷酶、α-淀粉酶和 GSK-3β。本综述文章介绍了噁二唑类化合物的化学结构和性质,并强调了它们通过作用于不同靶点而产生的抗糖尿病活性。本文还讨论了噁二唑混合物的 SAR,这将为今后设计和开发新的 1,3,4-噁二唑衍生物作为有前景的抗糖尿病药物铺平道路。我们希望这篇文章能为具有抗糖尿病潜力的噁二唑衍生物提供全面的知识和当前的创新,并满足科学界设计和开发有效抗糖尿病药物的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1,3,4-Oxadiazole Scaffold in Antidiabetic Drug Discovery: An Overview.
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. With the increasing number of cases of diabetes and drug-resistant diabetes, there is an urgent need to develop new potent molecules capable of combating this cruel disease. Medicinal chemistry concerns the discovery, development, identification, and interpretation of the mode of action of biologically active compounds at the molecular level. Oxadiazole-based derivatives have come up as a potential option for antidiabetic drug research. Oxadiazole is a five-membered heterocyclic organic compound containing two nitrogen atoms and one oxygen atom in its ring. Oxadiazole hybrids have shown the ability to improve glucose tolerance, enhance insulin sensitivity, and reduce fasting blood glucose levels. The mechanisms underlying the antidiabetic effects of oxadiazole involve the modulation of molecular targets such as peroxisome proliferator-activated receptor gamma (PPARγ), α-glucosidase, α-amylase and GSK-3β which regulate glucose metabolism and insulin secretion. The present review article describes the chemical structure and properties of oxadiazoles and highlights the antidiabetic activity through action on different targets. The SAR for the oxadiazole hybrids has been discussed in this article, which will pave the way for the design and development of new 1,3,4-oxadiazole derivatives as promising antidiabetic agents in the future. We expect that this article will provide comprehensive knowledge and current innovation on oxadiazole derivatives with antidiabetic potential and will fulfil the needs of the scientific community in designing and developing efficacious antidiabetic agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
231
审稿时长
6 months
期刊介绍: The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines. Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies. Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Development of Mycobacterium tuberculosis Enoyl Acyl Reductase (InhA) Inhibitors: A Mini-Review. Phytochemicals and Nanotechnology: A Powerful Combination against Breast Cancer. The Role of Essential Oils on Sleep Quality and Other Sleep-related Issues: Evidence from Clinical Trials. Cinnamic Acid Derivatives: Recent Discoveries and Development Strategies for Alzheimer's Disease. From Traditional Use to Modern Evidence: The Medicinal Chemistry of Antimalarials from Genus Artemisia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1