通过机器学习模型量化量子纠缠

Changchun Feng, Lin Chen
{"title":"通过机器学习模型量化量子纠缠","authors":"Changchun Feng, Lin Chen","doi":"10.1088/1572-9494/ad4090","DOIUrl":null,"url":null,"abstract":"\n Quantifying entanglement measures for quantum states with unknown density matrices is a chal lenging task. Machine learning offers a new perspective to address this problem. By training machine learning models using experimentally measurable data, we can predict the target entan glement measures. In this study, we compare various machine learning models and find that the linear regression and stack models perform better than others. We investigate the model’s impact on quantum states across different dimensions and find that higher-dimensional quantum states yield better results. Additionally, we investigate which measurable data has better predictive power for target entanglement measures. Using correlation analysis and principal component analysis, we demonstrate that quantum moments exhibit a stronger correlation with coherent information among these data features.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying quantum entanglement via machine learning models\",\"authors\":\"Changchun Feng, Lin Chen\",\"doi\":\"10.1088/1572-9494/ad4090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Quantifying entanglement measures for quantum states with unknown density matrices is a chal lenging task. Machine learning offers a new perspective to address this problem. By training machine learning models using experimentally measurable data, we can predict the target entan glement measures. In this study, we compare various machine learning models and find that the linear regression and stack models perform better than others. We investigate the model’s impact on quantum states across different dimensions and find that higher-dimensional quantum states yield better results. Additionally, we investigate which measurable data has better predictive power for target entanglement measures. Using correlation analysis and principal component analysis, we demonstrate that quantum moments exhibit a stronger correlation with coherent information among these data features.\",\"PeriodicalId\":508917,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad4090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad4090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量化具有未知密度矩阵的量子态的纠缠度量是一项艰巨的任务。机器学习为解决这一问题提供了新的视角。通过使用实验可测量数据训练机器学习模型,我们可以预测目标纠缠度量。在本研究中,我们对各种机器学习模型进行了比较,发现线性回归和堆栈模型的性能优于其他模型。我们研究了模型对不同维度量子态的影响,发现高维度量子态的结果更好。此外,我们还研究了哪些可测量数据对目标纠缠度量具有更好的预测能力。通过相关分析和主成分分析,我们证明量子矩与这些数据特征中的相干信息具有更强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying quantum entanglement via machine learning models
Quantifying entanglement measures for quantum states with unknown density matrices is a chal lenging task. Machine learning offers a new perspective to address this problem. By training machine learning models using experimentally measurable data, we can predict the target entan glement measures. In this study, we compare various machine learning models and find that the linear regression and stack models perform better than others. We investigate the model’s impact on quantum states across different dimensions and find that higher-dimensional quantum states yield better results. Additionally, we investigate which measurable data has better predictive power for target entanglement measures. Using correlation analysis and principal component analysis, we demonstrate that quantum moments exhibit a stronger correlation with coherent information among these data features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The extended Adomian decomposition method and its application to the rotating shallow water system for the numerical pulsrodon solutions Exploring the Impact of Weak Measurements on Exciton-Exciton Interactions Electromagnetic wave scattering in plasma beam driven waveguides under strong magnetic field High dimensional nonlinear variable separation solutions and novel wave excitations for the (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation Eikonal Approximation for Floquet Scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1