{"title":"智能家居异常检测机器学习方法综述:实验分析与未来方向","authors":"Md Motiur Rahman, Deepti Gupta, Smriti Bhatt, Shiva Shokouhmand, M. Faezipour","doi":"10.3390/fi16040139","DOIUrl":null,"url":null,"abstract":"Detecting anomalies in human activities is increasingly crucial today, particularly in nuclear family settings, where there may not be constant monitoring of individuals’ health, especially the elderly, during critical periods. Early anomaly detection can prevent from attack scenarios and life-threatening situations. This task becomes notably more complex when multiple ambient sensors are deployed in homes with multiple residents, as opposed to single-resident environments. Additionally, the availability of datasets containing anomalies representing the full spectrum of abnormalities is limited. In our experimental study, we employed eight widely used machine learning and two deep learning classifiers to identify anomalies in human activities. We meticulously generated anomalies, considering all conceivable scenarios. Our findings reveal that the Gated Recurrent Unit (GRU) excels in accurately classifying normal and anomalous activities, while the naïve Bayes classifier demonstrates relatively poor performance among the ten classifiers considered. We conducted various experiments to assess the impact of different training–test splitting ratios, along with a five-fold cross-validation technique, on the performance. Notably, the GRU model consistently outperformed all other classifiers under both conditions. Furthermore, we offer insights into the computational costs associated with these classifiers, encompassing training and prediction phases. Extensive ablation experiments conducted in this study underscore that all these classifiers can effectively be deployed for anomaly detection in two-resident homes.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Machine Learning Approaches for Anomaly Detection in Smart Homes: Experimental Analysis and Future Directions\",\"authors\":\"Md Motiur Rahman, Deepti Gupta, Smriti Bhatt, Shiva Shokouhmand, M. Faezipour\",\"doi\":\"10.3390/fi16040139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting anomalies in human activities is increasingly crucial today, particularly in nuclear family settings, where there may not be constant monitoring of individuals’ health, especially the elderly, during critical periods. Early anomaly detection can prevent from attack scenarios and life-threatening situations. This task becomes notably more complex when multiple ambient sensors are deployed in homes with multiple residents, as opposed to single-resident environments. Additionally, the availability of datasets containing anomalies representing the full spectrum of abnormalities is limited. In our experimental study, we employed eight widely used machine learning and two deep learning classifiers to identify anomalies in human activities. We meticulously generated anomalies, considering all conceivable scenarios. Our findings reveal that the Gated Recurrent Unit (GRU) excels in accurately classifying normal and anomalous activities, while the naïve Bayes classifier demonstrates relatively poor performance among the ten classifiers considered. We conducted various experiments to assess the impact of different training–test splitting ratios, along with a five-fold cross-validation technique, on the performance. Notably, the GRU model consistently outperformed all other classifiers under both conditions. Furthermore, we offer insights into the computational costs associated with these classifiers, encompassing training and prediction phases. Extensive ablation experiments conducted in this study underscore that all these classifiers can effectively be deployed for anomaly detection in two-resident homes.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16040139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Comprehensive Review of Machine Learning Approaches for Anomaly Detection in Smart Homes: Experimental Analysis and Future Directions
Detecting anomalies in human activities is increasingly crucial today, particularly in nuclear family settings, where there may not be constant monitoring of individuals’ health, especially the elderly, during critical periods. Early anomaly detection can prevent from attack scenarios and life-threatening situations. This task becomes notably more complex when multiple ambient sensors are deployed in homes with multiple residents, as opposed to single-resident environments. Additionally, the availability of datasets containing anomalies representing the full spectrum of abnormalities is limited. In our experimental study, we employed eight widely used machine learning and two deep learning classifiers to identify anomalies in human activities. We meticulously generated anomalies, considering all conceivable scenarios. Our findings reveal that the Gated Recurrent Unit (GRU) excels in accurately classifying normal and anomalous activities, while the naïve Bayes classifier demonstrates relatively poor performance among the ten classifiers considered. We conducted various experiments to assess the impact of different training–test splitting ratios, along with a five-fold cross-validation technique, on the performance. Notably, the GRU model consistently outperformed all other classifiers under both conditions. Furthermore, we offer insights into the computational costs associated with these classifiers, encompassing training and prediction phases. Extensive ablation experiments conducted in this study underscore that all these classifiers can effectively be deployed for anomaly detection in two-resident homes.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.