Yazhi Liu, Pengfei Zhong, Zhigang Yang, Wei Li, Siwei Li
{"title":"多接入边缘计算中基于分布式重叠网络缓存共享机制的计算卸载","authors":"Yazhi Liu, Pengfei Zhong, Zhigang Yang, Wei Li, Siwei Li","doi":"10.3390/fi16040136","DOIUrl":null,"url":null,"abstract":"Multi-access edge computing (MEC) enhances service quality for users and reduces computational overhead by migrating workloads and application data to the network edge. However, current solutions for task offloading and cache replacement in edge scenarios are constrained by factors such as communication bandwidth, wireless network coverage, and limited storage capacity of edge devices, making it challenging to achieve high cache reuse and lower system energy consumption. To address these issues, a framework leveraging cooperative edge servers deployed in wireless access networks across different geographical regions is designed. Specifically, we propose the Distributed Edge Service Caching and Offloading (DESCO) network architecture and design a decentralized resource-sharing algorithm based on consistent hashing, named Cache Chord. Subsequently, based on DESCO and aiming to minimize overall user energy consumption while maintaining user latency constraints, we introduce the real-time computation offloading (RCO) problem and transform RCO into a multi-player static game, prove the existence of Nash equilibrium solutions, and solve it using a multi-dimensional particle swarm optimization algorithm. Finally, simulation results demonstrate that the proposed solution reduces the average energy consumption by over 27% in the DESCO network compared to existing algorithms.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation Offloading Based on a Distributed Overlay Network Cache-Sharing Mechanism in Multi-Access Edge Computing\",\"authors\":\"Yazhi Liu, Pengfei Zhong, Zhigang Yang, Wei Li, Siwei Li\",\"doi\":\"10.3390/fi16040136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-access edge computing (MEC) enhances service quality for users and reduces computational overhead by migrating workloads and application data to the network edge. However, current solutions for task offloading and cache replacement in edge scenarios are constrained by factors such as communication bandwidth, wireless network coverage, and limited storage capacity of edge devices, making it challenging to achieve high cache reuse and lower system energy consumption. To address these issues, a framework leveraging cooperative edge servers deployed in wireless access networks across different geographical regions is designed. Specifically, we propose the Distributed Edge Service Caching and Offloading (DESCO) network architecture and design a decentralized resource-sharing algorithm based on consistent hashing, named Cache Chord. Subsequently, based on DESCO and aiming to minimize overall user energy consumption while maintaining user latency constraints, we introduce the real-time computation offloading (RCO) problem and transform RCO into a multi-player static game, prove the existence of Nash equilibrium solutions, and solve it using a multi-dimensional particle swarm optimization algorithm. Finally, simulation results demonstrate that the proposed solution reduces the average energy consumption by over 27% in the DESCO network compared to existing algorithms.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16040136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Computation Offloading Based on a Distributed Overlay Network Cache-Sharing Mechanism in Multi-Access Edge Computing
Multi-access edge computing (MEC) enhances service quality for users and reduces computational overhead by migrating workloads and application data to the network edge. However, current solutions for task offloading and cache replacement in edge scenarios are constrained by factors such as communication bandwidth, wireless network coverage, and limited storage capacity of edge devices, making it challenging to achieve high cache reuse and lower system energy consumption. To address these issues, a framework leveraging cooperative edge servers deployed in wireless access networks across different geographical regions is designed. Specifically, we propose the Distributed Edge Service Caching and Offloading (DESCO) network architecture and design a decentralized resource-sharing algorithm based on consistent hashing, named Cache Chord. Subsequently, based on DESCO and aiming to minimize overall user energy consumption while maintaining user latency constraints, we introduce the real-time computation offloading (RCO) problem and transform RCO into a multi-player static game, prove the existence of Nash equilibrium solutions, and solve it using a multi-dimensional particle swarm optimization algorithm. Finally, simulation results demonstrate that the proposed solution reduces the average energy consumption by over 27% in the DESCO network compared to existing algorithms.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.