Jermaine D. Perier, P. S. Cremonez, Albertha J Parkins, Arash Kheirodin, Alvin M. Simmons, David G. Riley
{"title":"用于评估田间烟粉虱(半翅目:蝼蛄科)对杀虫剂反应的修正最大剂量生物测定法1","authors":"Jermaine D. Perier, P. S. Cremonez, Albertha J Parkins, Arash Kheirodin, Alvin M. Simmons, David G. Riley","doi":"10.18474/jes23-88","DOIUrl":null,"url":null,"abstract":"\n The sweetpotato whitefly, Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae), continues to be a major pest of vegetable cultivation in Georgia, USA. Field-by-field surveying is an effective approach to determining the susceptibility status of a B. tabaci population to an insecticide. During 2020–2022, a modified maximum dose bioassay method was tested to characterize the insecticide response of B. tabaci field populations to several commonly used insecticides for whitefly management in Tift Co., GA, and the surrounding areas. A rapid bioassay was used for these evaluations that allowed for field assessments before spray applications to reduce the adult life stage of this species. The results of the evaluations were produced within 24-h following a 24-h root drench period. Our survey suggests that the neonicotinoids dinotefuran and flupyradifurone were the most effective insecticides from the Insecticide Resistance Action Committee (IRAC) group 4A. Cyantraniliprole was also effective, with 88 and 86% adult mortality following exposure to the high (maximum) and low doses, respectively. Conversely, the levels of control using another diamide, cyclaniliprole, were notably lower. Adding a low dose to the high dose provided an early indication of inefficient control with a product potentially indicating an increase in resistance. Specifically, a significant difference between the high and low doses suggests that the dose–response curve had shifted toward resistance development in each B. tabaci field population. The proposed bioassay method is meant for systemic insecticides that offer quick responses on adults. The use of this efficient method will improve evaluations prioritizing insecticides for use or rotation in an insecticide resistance management program.","PeriodicalId":15765,"journal":{"name":"Journal of Entomological Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Maximum Dose Bioassay for Assessing Insecticide Response in Field Populations of Bemisia tabaci (Hemiptera: Aleyrodidae)1\",\"authors\":\"Jermaine D. Perier, P. S. Cremonez, Albertha J Parkins, Arash Kheirodin, Alvin M. Simmons, David G. Riley\",\"doi\":\"10.18474/jes23-88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The sweetpotato whitefly, Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae), continues to be a major pest of vegetable cultivation in Georgia, USA. Field-by-field surveying is an effective approach to determining the susceptibility status of a B. tabaci population to an insecticide. During 2020–2022, a modified maximum dose bioassay method was tested to characterize the insecticide response of B. tabaci field populations to several commonly used insecticides for whitefly management in Tift Co., GA, and the surrounding areas. A rapid bioassay was used for these evaluations that allowed for field assessments before spray applications to reduce the adult life stage of this species. The results of the evaluations were produced within 24-h following a 24-h root drench period. Our survey suggests that the neonicotinoids dinotefuran and flupyradifurone were the most effective insecticides from the Insecticide Resistance Action Committee (IRAC) group 4A. Cyantraniliprole was also effective, with 88 and 86% adult mortality following exposure to the high (maximum) and low doses, respectively. Conversely, the levels of control using another diamide, cyclaniliprole, were notably lower. Adding a low dose to the high dose provided an early indication of inefficient control with a product potentially indicating an increase in resistance. Specifically, a significant difference between the high and low doses suggests that the dose–response curve had shifted toward resistance development in each B. tabaci field population. The proposed bioassay method is meant for systemic insecticides that offer quick responses on adults. The use of this efficient method will improve evaluations prioritizing insecticides for use or rotation in an insecticide resistance management program.\",\"PeriodicalId\":15765,\"journal\":{\"name\":\"Journal of Entomological Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Entomological Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.18474/jes23-88\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Entomological Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.18474/jes23-88","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Modified Maximum Dose Bioassay for Assessing Insecticide Response in Field Populations of Bemisia tabaci (Hemiptera: Aleyrodidae)1
The sweetpotato whitefly, Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae), continues to be a major pest of vegetable cultivation in Georgia, USA. Field-by-field surveying is an effective approach to determining the susceptibility status of a B. tabaci population to an insecticide. During 2020–2022, a modified maximum dose bioassay method was tested to characterize the insecticide response of B. tabaci field populations to several commonly used insecticides for whitefly management in Tift Co., GA, and the surrounding areas. A rapid bioassay was used for these evaluations that allowed for field assessments before spray applications to reduce the adult life stage of this species. The results of the evaluations were produced within 24-h following a 24-h root drench period. Our survey suggests that the neonicotinoids dinotefuran and flupyradifurone were the most effective insecticides from the Insecticide Resistance Action Committee (IRAC) group 4A. Cyantraniliprole was also effective, with 88 and 86% adult mortality following exposure to the high (maximum) and low doses, respectively. Conversely, the levels of control using another diamide, cyclaniliprole, were notably lower. Adding a low dose to the high dose provided an early indication of inefficient control with a product potentially indicating an increase in resistance. Specifically, a significant difference between the high and low doses suggests that the dose–response curve had shifted toward resistance development in each B. tabaci field population. The proposed bioassay method is meant for systemic insecticides that offer quick responses on adults. The use of this efficient method will improve evaluations prioritizing insecticides for use or rotation in an insecticide resistance management program.
期刊介绍:
The Journal of Entomological Science (ISSN 0749-8004) is a peer-reviewed, scholarly journal that is published quarterly (January, April, July, and October) under the auspices of the Georgia Entomological Society in concert with Allen Press (Lawrence, Kansas). Manuscripts deemed acceptable for publication in the Journal report original research with insects and related arthropods or literature reviews offering foundations to innovative directions in entomological research