{"title":"根据自由潜水数据对小企鹅水下运动进行生物力学分析。","authors":"M. Masud, Peter Dabnichki","doi":"10.1242/bio.060244","DOIUrl":null,"url":null,"abstract":"Penguins are proficient swimmers, and their survival depends on their ability to catch prey. The diving behaviour of these fascinating birds should then minimize the associated energy cost. For the first time, the energy cost of penguin dives is computed from the free-ranging dive data, on the basis of an existing biomechanical model. Time-resolved acceleration and depth data collected for 300 dives of little penguins (Eudyptula minor) are specifically employed to compute the bird dive angles and swimming speeds, which are needed for the energy estimate. We find that the numerically obtained energy cost by using the free-ranging dive data is not far from the minimum cost predicted by the model. The outcome, therefore, supports the physical soundness of the chosen model; however, it also suggests that, for closer agreement, one should consider previously neglected effects, such as those due to water currents and those associated with motion unsteadiness. Additionally, from the free-ranging dive data, we calculate hydrodynamic forces and non-dimensional indicators of propulsion performance - Strouhal and Reynolds numbers. The obtained values further confirm that little penguins employ efficient propulsion mechanisms, in agreement with previous investigations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical analysis of little penguins' underwater locomotion from the free-ranging dive data.\",\"authors\":\"M. Masud, Peter Dabnichki\",\"doi\":\"10.1242/bio.060244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penguins are proficient swimmers, and their survival depends on their ability to catch prey. The diving behaviour of these fascinating birds should then minimize the associated energy cost. For the first time, the energy cost of penguin dives is computed from the free-ranging dive data, on the basis of an existing biomechanical model. Time-resolved acceleration and depth data collected for 300 dives of little penguins (Eudyptula minor) are specifically employed to compute the bird dive angles and swimming speeds, which are needed for the energy estimate. We find that the numerically obtained energy cost by using the free-ranging dive data is not far from the minimum cost predicted by the model. The outcome, therefore, supports the physical soundness of the chosen model; however, it also suggests that, for closer agreement, one should consider previously neglected effects, such as those due to water currents and those associated with motion unsteadiness. Additionally, from the free-ranging dive data, we calculate hydrodynamic forces and non-dimensional indicators of propulsion performance - Strouhal and Reynolds numbers. The obtained values further confirm that little penguins employ efficient propulsion mechanisms, in agreement with previous investigations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.060244\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060244","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomechanical analysis of little penguins' underwater locomotion from the free-ranging dive data.
Penguins are proficient swimmers, and their survival depends on their ability to catch prey. The diving behaviour of these fascinating birds should then minimize the associated energy cost. For the first time, the energy cost of penguin dives is computed from the free-ranging dive data, on the basis of an existing biomechanical model. Time-resolved acceleration and depth data collected for 300 dives of little penguins (Eudyptula minor) are specifically employed to compute the bird dive angles and swimming speeds, which are needed for the energy estimate. We find that the numerically obtained energy cost by using the free-ranging dive data is not far from the minimum cost predicted by the model. The outcome, therefore, supports the physical soundness of the chosen model; however, it also suggests that, for closer agreement, one should consider previously neglected effects, such as those due to water currents and those associated with motion unsteadiness. Additionally, from the free-ranging dive data, we calculate hydrodynamic forces and non-dimensional indicators of propulsion performance - Strouhal and Reynolds numbers. The obtained values further confirm that little penguins employ efficient propulsion mechanisms, in agreement with previous investigations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.