{"title":"5G 移动网络中基于 SRv6 的边缘服务连续性","authors":"Laura Lemmi, C. Puliafito, A. Virdis, E. Mingozzi","doi":"10.3390/fi16040138","DOIUrl":null,"url":null,"abstract":"Ensuring compliance with the stringent latency requirements of edge services requires close cooperation between the network and computing components. Within mobile 5G networks, the nomadic behavior of users may impact the performance of edge services, prompting the need for workload migration techniques. These techniques allow services to follow users by moving between edge nodes. This paper introduces an innovative approach for edge service continuity by integrating Segment Routing over IPv6 (SRv6) into the 5G core data plane alongside the ETSI multi-access edge computing (MEC) architecture. Our approach maintains compatibility with non-SRv6 5G network components. We use SRv6 for packet steering and Software-Defined Networking (SDN) for dynamic network configuration. Leveraging the SRv6 Network Programming paradigm, we achieve lossless workload migration by implementing a packet buffer as a virtual network function. Our buffer may be dynamically allocated and configured within the network. We test our proposed solution on a small-scale testbed consisting of an Open Network Operating System (ONOS) SDN controller and a core network made of P4 BMv2 switches, emulated using Mininet. A comparison with a non-SRv6 alternative that uses IPv6 routing shows the higher scalability and flexibility of our approach in terms of the number of rules to be installed and time required for configuration.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SRv6-Based Edge Service Continuity in 5G Mobile Networks\",\"authors\":\"Laura Lemmi, C. Puliafito, A. Virdis, E. Mingozzi\",\"doi\":\"10.3390/fi16040138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring compliance with the stringent latency requirements of edge services requires close cooperation between the network and computing components. Within mobile 5G networks, the nomadic behavior of users may impact the performance of edge services, prompting the need for workload migration techniques. These techniques allow services to follow users by moving between edge nodes. This paper introduces an innovative approach for edge service continuity by integrating Segment Routing over IPv6 (SRv6) into the 5G core data plane alongside the ETSI multi-access edge computing (MEC) architecture. Our approach maintains compatibility with non-SRv6 5G network components. We use SRv6 for packet steering and Software-Defined Networking (SDN) for dynamic network configuration. Leveraging the SRv6 Network Programming paradigm, we achieve lossless workload migration by implementing a packet buffer as a virtual network function. Our buffer may be dynamically allocated and configured within the network. We test our proposed solution on a small-scale testbed consisting of an Open Network Operating System (ONOS) SDN controller and a core network made of P4 BMv2 switches, emulated using Mininet. A comparison with a non-SRv6 alternative that uses IPv6 routing shows the higher scalability and flexibility of our approach in terms of the number of rules to be installed and time required for configuration.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16040138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
SRv6-Based Edge Service Continuity in 5G Mobile Networks
Ensuring compliance with the stringent latency requirements of edge services requires close cooperation between the network and computing components. Within mobile 5G networks, the nomadic behavior of users may impact the performance of edge services, prompting the need for workload migration techniques. These techniques allow services to follow users by moving between edge nodes. This paper introduces an innovative approach for edge service continuity by integrating Segment Routing over IPv6 (SRv6) into the 5G core data plane alongside the ETSI multi-access edge computing (MEC) architecture. Our approach maintains compatibility with non-SRv6 5G network components. We use SRv6 for packet steering and Software-Defined Networking (SDN) for dynamic network configuration. Leveraging the SRv6 Network Programming paradigm, we achieve lossless workload migration by implementing a packet buffer as a virtual network function. Our buffer may be dynamically allocated and configured within the network. We test our proposed solution on a small-scale testbed consisting of an Open Network Operating System (ONOS) SDN controller and a core network made of P4 BMv2 switches, emulated using Mininet. A comparison with a non-SRv6 alternative that uses IPv6 routing shows the higher scalability and flexibility of our approach in terms of the number of rules to be installed and time required for configuration.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.