Aswathy S. Murali, Chippy Harish, Sherin Susan Cherian, Gayathri S. Nair, S. Lekshmi, Surya Gopidas, Beena Saraswathyamma
{"title":"聚(邻苯基二胺)改性铅笔石墨作为一次性电化学传感器用于色胺的伏安分析","authors":"Aswathy S. Murali, Chippy Harish, Sherin Susan Cherian, Gayathri S. Nair, S. Lekshmi, Surya Gopidas, Beena Saraswathyamma","doi":"10.4028/p-jfp00y","DOIUrl":null,"url":null,"abstract":"By means of electropolymerization process, a simple as well as proficient electrochemical sensor was developed for electrochemical resolution of tryptamine. The morphology and electrochemistry of thus fabricated poly (O-Phenylene diamine) reformed pencil graphite is evaluated thoroughly by FESEM along with DPV and CV respectively. Under experimental settings, finely resolved irreversible electro-oxidation peak at potential +0.594 V obtained for tryptamine on the altered electrode surface with phosphate buffer of pH 9 as supporting electrolyte. The oxidation peak current and tryptamine concentration are observed to possess linearity in the range of 0.4 μM to 117 μM with R2 = 0.99. Additionally the limit of detection (LOD) for tryptamine quantification is found as 0.2 μM. The sensor exhibited superior analytical properties such as high reproducibility, repeatability and anti-interference capability. The practical efficiency of fabricated sensor tested successfully in cheese obtained from milk.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":" 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly(O-Phenylene Diamine) Reformed Pencil Graphite as the Disposable Electrochemical Sensor for Voltammetric Analysis of Tryptamine\",\"authors\":\"Aswathy S. Murali, Chippy Harish, Sherin Susan Cherian, Gayathri S. Nair, S. Lekshmi, Surya Gopidas, Beena Saraswathyamma\",\"doi\":\"10.4028/p-jfp00y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By means of electropolymerization process, a simple as well as proficient electrochemical sensor was developed for electrochemical resolution of tryptamine. The morphology and electrochemistry of thus fabricated poly (O-Phenylene diamine) reformed pencil graphite is evaluated thoroughly by FESEM along with DPV and CV respectively. Under experimental settings, finely resolved irreversible electro-oxidation peak at potential +0.594 V obtained for tryptamine on the altered electrode surface with phosphate buffer of pH 9 as supporting electrolyte. The oxidation peak current and tryptamine concentration are observed to possess linearity in the range of 0.4 μM to 117 μM with R2 = 0.99. Additionally the limit of detection (LOD) for tryptamine quantification is found as 0.2 μM. The sensor exhibited superior analytical properties such as high reproducibility, repeatability and anti-interference capability. The practical efficiency of fabricated sensor tested successfully in cheese obtained from milk.\",\"PeriodicalId\":17714,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":\" 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-jfp00y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-jfp00y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poly(O-Phenylene Diamine) Reformed Pencil Graphite as the Disposable Electrochemical Sensor for Voltammetric Analysis of Tryptamine
By means of electropolymerization process, a simple as well as proficient electrochemical sensor was developed for electrochemical resolution of tryptamine. The morphology and electrochemistry of thus fabricated poly (O-Phenylene diamine) reformed pencil graphite is evaluated thoroughly by FESEM along with DPV and CV respectively. Under experimental settings, finely resolved irreversible electro-oxidation peak at potential +0.594 V obtained for tryptamine on the altered electrode surface with phosphate buffer of pH 9 as supporting electrolyte. The oxidation peak current and tryptamine concentration are observed to possess linearity in the range of 0.4 μM to 117 μM with R2 = 0.99. Additionally the limit of detection (LOD) for tryptamine quantification is found as 0.2 μM. The sensor exhibited superior analytical properties such as high reproducibility, repeatability and anti-interference capability. The practical efficiency of fabricated sensor tested successfully in cheese obtained from milk.