Muslume Beyza Yildiz, Elham Tahsin Yasin, Murat Koklu
{"title":"使用常见的深度学习算法和机器学习方法,利用开发的移动应用程序进行鱼眼保鲜检测","authors":"Muslume Beyza Yildiz, Elham Tahsin Yasin, Murat Koklu","doi":"10.1007/s00217-024-04493-0","DOIUrl":null,"url":null,"abstract":"<p>Fish is commonly ingested as a source of protein and essential nutrients for humans. To fully benefit from the proteins and substances in fish it is crucial to ensure its freshness. If fish is stored for an extended period, its freshness deteriorates. Determining the freshness of fish can be done by examining its eyes, smell, skin, and gills. In this study, artificial intelligence techniques are employed to assess fish freshness. The author’s objective is to evaluate the freshness of fish by analyzing its eye characteristics. To achieve this, we have developed a combination of deep and machine learning models that accurately classify the freshness of fish. Furthermore, an application that utilizes both deep learning and machine learning, to instantly detect the freshness of any given fish sample was created. Two deep learning algorithms (SqueezeNet, and VGG19) were implemented to extract features from image data. Additionally, five machine learning models to classify the freshness levels of fish samples were applied. Machine learning models include (k-NN, RF, SVM, LR, and ANN). Based on the results, it can be inferred that employing the VGG19 model for feature selection in conjunction with an Artificial Neural Network (ANN) for classification yields the most favorable success rate of 77.3% for the FFE dataset.</p>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"250 7","pages":"1919 - 1932"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00217-024-04493-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed mobile application\",\"authors\":\"Muslume Beyza Yildiz, Elham Tahsin Yasin, Murat Koklu\",\"doi\":\"10.1007/s00217-024-04493-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fish is commonly ingested as a source of protein and essential nutrients for humans. To fully benefit from the proteins and substances in fish it is crucial to ensure its freshness. If fish is stored for an extended period, its freshness deteriorates. Determining the freshness of fish can be done by examining its eyes, smell, skin, and gills. In this study, artificial intelligence techniques are employed to assess fish freshness. The author’s objective is to evaluate the freshness of fish by analyzing its eye characteristics. To achieve this, we have developed a combination of deep and machine learning models that accurately classify the freshness of fish. Furthermore, an application that utilizes both deep learning and machine learning, to instantly detect the freshness of any given fish sample was created. Two deep learning algorithms (SqueezeNet, and VGG19) were implemented to extract features from image data. Additionally, five machine learning models to classify the freshness levels of fish samples were applied. Machine learning models include (k-NN, RF, SVM, LR, and ANN). Based on the results, it can be inferred that employing the VGG19 model for feature selection in conjunction with an Artificial Neural Network (ANN) for classification yields the most favorable success rate of 77.3% for the FFE dataset.</p>\",\"PeriodicalId\":549,\"journal\":{\"name\":\"European Food Research and Technology\",\"volume\":\"250 7\",\"pages\":\"1919 - 1932\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00217-024-04493-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Food Research and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00217-024-04493-0\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-024-04493-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed mobile application
Fish is commonly ingested as a source of protein and essential nutrients for humans. To fully benefit from the proteins and substances in fish it is crucial to ensure its freshness. If fish is stored for an extended period, its freshness deteriorates. Determining the freshness of fish can be done by examining its eyes, smell, skin, and gills. In this study, artificial intelligence techniques are employed to assess fish freshness. The author’s objective is to evaluate the freshness of fish by analyzing its eye characteristics. To achieve this, we have developed a combination of deep and machine learning models that accurately classify the freshness of fish. Furthermore, an application that utilizes both deep learning and machine learning, to instantly detect the freshness of any given fish sample was created. Two deep learning algorithms (SqueezeNet, and VGG19) were implemented to extract features from image data. Additionally, five machine learning models to classify the freshness levels of fish samples were applied. Machine learning models include (k-NN, RF, SVM, LR, and ANN). Based on the results, it can be inferred that employing the VGG19 model for feature selection in conjunction with an Artificial Neural Network (ANN) for classification yields the most favorable success rate of 77.3% for the FFE dataset.
期刊介绍:
The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections:
-chemistry and biochemistry-
technology and molecular biotechnology-
nutritional chemistry and toxicology-
analytical and sensory methodologies-
food physics.
Out of the scope of the journal are:
- contributions which are not of international interest or do not have a substantial impact on food sciences,
- submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods,
- contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.