利用神经网络确定工单优先次序,改善楼宇运营

IF 3.6 Q1 ENGINEERING, CIVIL Journal of Information Technology in Construction Pub Date : 2024-04-18 DOI:10.36680/j.itcon.2024.016
{"title":"利用神经网络确定工单优先次序,改善楼宇运营","authors":"","doi":"10.36680/j.itcon.2024.016","DOIUrl":null,"url":null,"abstract":"Current practices for prioritizing maintenance work orders are mainly user-driven and lack consistency in collecting, processing, and managing the large amount of data. While decision-making methods have been used to address some of the existing challenges such as inconsistency, they also have challenges including variation between comparison during the actual prioritization task as opposed to those outside of maintenance context. The data analytics and machine learning methods can help with extracting meaningful and valuable information, finding patterns, and drawing conclusions from the available data. Such methods have benefits including faster prioritization performance leading to less failure and downtimes, reduced impact of knowledge loss, decreased cognitive workload, identification of errors for adjusting the system, and determination of important factors impacting work order processing to support the development of data requirements. This paper summarizes the background on existing gaps in processing maintenance work orders and provides an overview of machine learning methods to support prioritizing work order. The paper then discusses the work order data of an educational facility as a case study, presents information on data exploration and data cleaning approach, and provides insights gained from their maintenance work order data. The insights gained present challenges such as submission of multiple work orders as one, missing data for certain criteria, long durations for addressing some of the work orders, and the correlation between criteria collected by the facility and the schedule. The paper continues by implementing artificial neural networks to benefit from work order data collected for automatically prioritizing the future work orders. The results present the optimum neural network structure based on mean squared error estimated and provides the best value for each parameter used for the development of the model. The accuracy and efficiency of the developed model was validated by the facility experts of the educational facility.","PeriodicalId":51624,"journal":{"name":"Journal of Information Technology in Construction","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Work order prioritization using neural networks to improve building operation\",\"authors\":\"\",\"doi\":\"10.36680/j.itcon.2024.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current practices for prioritizing maintenance work orders are mainly user-driven and lack consistency in collecting, processing, and managing the large amount of data. While decision-making methods have been used to address some of the existing challenges such as inconsistency, they also have challenges including variation between comparison during the actual prioritization task as opposed to those outside of maintenance context. The data analytics and machine learning methods can help with extracting meaningful and valuable information, finding patterns, and drawing conclusions from the available data. Such methods have benefits including faster prioritization performance leading to less failure and downtimes, reduced impact of knowledge loss, decreased cognitive workload, identification of errors for adjusting the system, and determination of important factors impacting work order processing to support the development of data requirements. This paper summarizes the background on existing gaps in processing maintenance work orders and provides an overview of machine learning methods to support prioritizing work order. The paper then discusses the work order data of an educational facility as a case study, presents information on data exploration and data cleaning approach, and provides insights gained from their maintenance work order data. The insights gained present challenges such as submission of multiple work orders as one, missing data for certain criteria, long durations for addressing some of the work orders, and the correlation between criteria collected by the facility and the schedule. The paper continues by implementing artificial neural networks to benefit from work order data collected for automatically prioritizing the future work orders. The results present the optimum neural network structure based on mean squared error estimated and provides the best value for each parameter used for the development of the model. The accuracy and efficiency of the developed model was validated by the facility experts of the educational facility.\",\"PeriodicalId\":51624,\"journal\":{\"name\":\"Journal of Information Technology in Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Technology in Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36680/j.itcon.2024.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36680/j.itcon.2024.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

确定维护工单优先级的现行做法主要由用户驱动,在收集、处理和管理大量数据时缺乏一致性。虽然决策方法已被用于解决现有的一些挑战,如不一致性,但它们也面临着一些挑战,包括在实际确定优先级任务期间的比较与维护背景之外的比较之间的差异。数据分析和机器学习方法有助于从可用数据中提取有意义、有价值的信息,发现模式并得出结论。这些方法的好处包括:更快地确定优先级,从而减少故障和停机时间;减少知识丢失的影响;减少认知工作量;识别错误以调整系统;确定影响工单处理的重要因素以支持数据需求的开发。本文总结了处理维护工单方面现有差距的背景,并概述了支持工单优先级排序的机器学习方法。然后,本文以一家教育机构的工单数据为案例,介绍了数据探索和数据清理方法,并提供了从其维护工单数据中获得的启示。所获得的启示提出了一些挑战,如将多个工单作为一个工单提交、某些标准的数据缺失、处理某些工单的时间过长,以及设施收集的标准与时间表之间的相关性。本文继续通过实施人工神经网络,从收集的工单数据中获益,自动确定未来工单的优先次序。结果显示了基于均方误差估算的最佳神经网络结构,并为用于开发模型的每个参数提供了最佳值。教育机构的设备专家对所开发模型的准确性和效率进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Work order prioritization using neural networks to improve building operation
Current practices for prioritizing maintenance work orders are mainly user-driven and lack consistency in collecting, processing, and managing the large amount of data. While decision-making methods have been used to address some of the existing challenges such as inconsistency, they also have challenges including variation between comparison during the actual prioritization task as opposed to those outside of maintenance context. The data analytics and machine learning methods can help with extracting meaningful and valuable information, finding patterns, and drawing conclusions from the available data. Such methods have benefits including faster prioritization performance leading to less failure and downtimes, reduced impact of knowledge loss, decreased cognitive workload, identification of errors for adjusting the system, and determination of important factors impacting work order processing to support the development of data requirements. This paper summarizes the background on existing gaps in processing maintenance work orders and provides an overview of machine learning methods to support prioritizing work order. The paper then discusses the work order data of an educational facility as a case study, presents information on data exploration and data cleaning approach, and provides insights gained from their maintenance work order data. The insights gained present challenges such as submission of multiple work orders as one, missing data for certain criteria, long durations for addressing some of the work orders, and the correlation between criteria collected by the facility and the schedule. The paper continues by implementing artificial neural networks to benefit from work order data collected for automatically prioritizing the future work orders. The results present the optimum neural network structure based on mean squared error estimated and provides the best value for each parameter used for the development of the model. The accuracy and efficiency of the developed model was validated by the facility experts of the educational facility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
8.60%
发文量
44
审稿时长
26 weeks
期刊最新文献
Least Square Moment Balanced Machine: A New Approach To Estimating Cost To Completion For Construction Projects Analysis of 5D BIM for cost estimation, cost control and payments Artificial Intelligence in Cloud Computing technology in the Construction industry: a bibliometric and systematic review Analyzing the added value of common data environments for organizational and project performance of BIM-based projects Development of standard-based information requirements for the facility management of a canteen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1