GCN-Net:使用图-CNN 进行 3D 点云分类和定位

Ahmed Abdullah, M. M. Nahid
{"title":"GCN-Net:使用图-CNN 进行 3D 点云分类和定位","authors":"Ahmed Abdullah, M. M. Nahid","doi":"10.53799/ajse.v23i1.763","DOIUrl":null,"url":null,"abstract":"In this paper, we have demonstrated the application of a graph convolutional neural network for the purpose of object detection in a LiDAR point cloud. In order to encode the point cloud in the most time-effective manner, we make use of a near-neighbors graph with a defined radius. We create a graph convolutional neural network so that we can find out what kind of object and what class each vertex in a graph represents. We design a box merging and scoring operation to reliably combine detections from numerous vertices into a single score, and we offer an auto-registration strategy as a means of reducing the amount of translation errors that occur inside the system. According to the results of our tests using the KITTI benchmark, we are able to draw the conclusion that the method that was suggested achieves competitive accuracy with the point cloud, even beating fusion-based methods in some instances. According to the results of our research, the graph neural network has the potential to become an effective new tool for the detection of 3D objects.","PeriodicalId":224436,"journal":{"name":"AIUB Journal of Science and Engineering (AJSE)","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GCN-Net: 3D Point Cloud Classification & Localization Using Graph-CNN\",\"authors\":\"Ahmed Abdullah, M. M. Nahid\",\"doi\":\"10.53799/ajse.v23i1.763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have demonstrated the application of a graph convolutional neural network for the purpose of object detection in a LiDAR point cloud. In order to encode the point cloud in the most time-effective manner, we make use of a near-neighbors graph with a defined radius. We create a graph convolutional neural network so that we can find out what kind of object and what class each vertex in a graph represents. We design a box merging and scoring operation to reliably combine detections from numerous vertices into a single score, and we offer an auto-registration strategy as a means of reducing the amount of translation errors that occur inside the system. According to the results of our tests using the KITTI benchmark, we are able to draw the conclusion that the method that was suggested achieves competitive accuracy with the point cloud, even beating fusion-based methods in some instances. According to the results of our research, the graph neural network has the potential to become an effective new tool for the detection of 3D objects.\",\"PeriodicalId\":224436,\"journal\":{\"name\":\"AIUB Journal of Science and Engineering (AJSE)\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIUB Journal of Science and Engineering (AJSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53799/ajse.v23i1.763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering (AJSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53799/ajse.v23i1.763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了图卷积神经网络在激光雷达点云物体检测中的应用。为了以最省时省力的方式对点云进行编码,我们使用了一个具有定义半径的近邻图。我们创建了一个图卷积神经网络,以便找出图中每个顶点所代表的物体类型和类别。我们设计了一种方框合并和评分操作,以便将来自众多顶点的检测结果可靠地合并为一个分数,我们还提供了一种自动注册策略,以此来减少系统内部出现的翻译错误。根据我们使用 KITTI 基准测试的结果,我们可以得出这样的结论:我们所建议的方法与点云的精确度不相上下,在某些情况下甚至超过了基于融合的方法。根据我们的研究结果,图神经网络有可能成为检测三维物体的有效新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GCN-Net: 3D Point Cloud Classification & Localization Using Graph-CNN
In this paper, we have demonstrated the application of a graph convolutional neural network for the purpose of object detection in a LiDAR point cloud. In order to encode the point cloud in the most time-effective manner, we make use of a near-neighbors graph with a defined radius. We create a graph convolutional neural network so that we can find out what kind of object and what class each vertex in a graph represents. We design a box merging and scoring operation to reliably combine detections from numerous vertices into a single score, and we offer an auto-registration strategy as a means of reducing the amount of translation errors that occur inside the system. According to the results of our tests using the KITTI benchmark, we are able to draw the conclusion that the method that was suggested achieves competitive accuracy with the point cloud, even beating fusion-based methods in some instances. According to the results of our research, the graph neural network has the potential to become an effective new tool for the detection of 3D objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Prediction of A Power Generation Gas Turbine Using An Optimized Artificial Neural Network Model Advancing Fuzzy Logic: A Hierarchical Fuzzy System Approach WVEHDD: Weighted Voting based Ensemble System for Heart Disease Detection Predictions of Malaysia Age-Specific Fertility Rates using the Lee-Carter and the Functional Data Approaches Performance Analysis of Automatic Generation Control for a Multi-Area Interconnected System Using Genetic Algorithm and Particle Swarm Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1