用于高超音速持续飞行模拟的燃烧驱动设施

Antonio Esposito, Marcello Lappa, Christophe Allouis
{"title":"用于高超音速持续飞行模拟的燃烧驱动设施","authors":"Antonio Esposito,&nbsp;Marcello Lappa,&nbsp;Christophe Allouis","doi":"10.1007/s42496-024-00213-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study reports on the development of a new Blowdown-Induction Facility driven by two different Oxygen-Fueled Guns. The facility has been conceived and realized to simulate different flow conditions in the context of hypersonic sustained flight<i>.</i> Here the underlying principles are illustrated critically, along with a focused description of the various facility subsystems, their interconnections and the procedures specifically conceived to overcome some of the technical complexities on which this facility relies. Its performances are finally presented in relation to some prototype applications, together with an indication of the related limits, advantages and possible directions for future improvements.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"103 3","pages":"271 - 287"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42496-024-00213-9.pdf","citationCount":"0","resultStr":"{\"title\":\"A Combustion-Driven Facility for Hypersonic Sustained Flight Simulation\",\"authors\":\"Antonio Esposito,&nbsp;Marcello Lappa,&nbsp;Christophe Allouis\",\"doi\":\"10.1007/s42496-024-00213-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study reports on the development of a new Blowdown-Induction Facility driven by two different Oxygen-Fueled Guns. The facility has been conceived and realized to simulate different flow conditions in the context of hypersonic sustained flight<i>.</i> Here the underlying principles are illustrated critically, along with a focused description of the various facility subsystems, their interconnections and the procedures specifically conceived to overcome some of the technical complexities on which this facility relies. Its performances are finally presented in relation to some prototype applications, together with an indication of the related limits, advantages and possible directions for future improvements.</p></div>\",\"PeriodicalId\":100054,\"journal\":{\"name\":\"Aerotecnica Missili & Spazio\",\"volume\":\"103 3\",\"pages\":\"271 - 287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42496-024-00213-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerotecnica Missili & Spazio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42496-024-00213-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-024-00213-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告介绍了由两种不同氧气燃料喷枪驱动的新型吹落-诱导设施的开发情况。该设施的构思和实现是为了模拟高超音速持续飞行背景下的不同流动条件。这里对其基本原理进行了批判性说明,并重点描述了各种设施子系统、它们之间的相互联系以及为克服该设施所依赖的一些技术复杂性而专门设计的程序。最后结合一些原型应用介绍了该设施的性能,并说明了相关的限制、优势和今后可能的改进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Combustion-Driven Facility for Hypersonic Sustained Flight Simulation

This study reports on the development of a new Blowdown-Induction Facility driven by two different Oxygen-Fueled Guns. The facility has been conceived and realized to simulate different flow conditions in the context of hypersonic sustained flight. Here the underlying principles are illustrated critically, along with a focused description of the various facility subsystems, their interconnections and the procedures specifically conceived to overcome some of the technical complexities on which this facility relies. Its performances are finally presented in relation to some prototype applications, together with an indication of the related limits, advantages and possible directions for future improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface AIDAA News #24 Considerations for a Spaceport in Venezuela: A Developing Country AIDAA News #23 Some Comments About the Quality and Quantity of Papers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1