{"title":"评价快速发展城镇流域径流处理的水力充足性","authors":"Chansler Dagnachew Adinew, Adane Abebe Awass, Kedir Mohammed Bushira, Tigistu Yisihak Ukumo, Muluneh Legesse Edamo","doi":"10.2166/h2oj.2024.095","DOIUrl":null,"url":null,"abstract":"\n \n The growth of cities significantly alters natural catchments by increasing impervious surfaces and necessitating the installation of an appropriate drainage system. Arba Minch is one of the rapidly expanding and facing street flooding. The objective of this study is to assess the hydraulic adequacy of runoff disposal in urban watersheds located in rapidly expanding towns. Stormwater Management Model (SWMM) was used to perform rainfall-runoff simulation. Personal Computer SWMM (PCSWMM) was used to carry out calibration and validation in the watershed. The primary and secondary data were used. Five Land Use/Land Cover (LULC) categories identified were asphalt, coble, vegetation, bare soil, and roof. The result shows 33.49% area is covered with highly impervious land cover. The overall calibration and validation are a very good fit with the observed flow. The total runoff volume of 9494.15 km3 was generated from the town area which is 13.7 km2. The peak runoff determined from 373 sub-catchments varies from 0.01 to 4.48 m3s−1. According to the simulated result, 7.46% of existing drainage channels were flooded. Anticipating future runoff generation, this study evaluates the inadequacy of existing drainage channels in urban areas. Hydraulic analysis is recommended before constructing drainage structures to protect flooding effect.","PeriodicalId":504893,"journal":{"name":"H2Open Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of hydraulic adequacy of runoff disposal in urban watersheds of rapidly expanding town\",\"authors\":\"Chansler Dagnachew Adinew, Adane Abebe Awass, Kedir Mohammed Bushira, Tigistu Yisihak Ukumo, Muluneh Legesse Edamo\",\"doi\":\"10.2166/h2oj.2024.095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The growth of cities significantly alters natural catchments by increasing impervious surfaces and necessitating the installation of an appropriate drainage system. Arba Minch is one of the rapidly expanding and facing street flooding. The objective of this study is to assess the hydraulic adequacy of runoff disposal in urban watersheds located in rapidly expanding towns. Stormwater Management Model (SWMM) was used to perform rainfall-runoff simulation. Personal Computer SWMM (PCSWMM) was used to carry out calibration and validation in the watershed. The primary and secondary data were used. Five Land Use/Land Cover (LULC) categories identified were asphalt, coble, vegetation, bare soil, and roof. The result shows 33.49% area is covered with highly impervious land cover. The overall calibration and validation are a very good fit with the observed flow. The total runoff volume of 9494.15 km3 was generated from the town area which is 13.7 km2. The peak runoff determined from 373 sub-catchments varies from 0.01 to 4.48 m3s−1. According to the simulated result, 7.46% of existing drainage channels were flooded. Anticipating future runoff generation, this study evaluates the inadequacy of existing drainage channels in urban areas. Hydraulic analysis is recommended before constructing drainage structures to protect flooding effect.\",\"PeriodicalId\":504893,\"journal\":{\"name\":\"H2Open Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"H2Open Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/h2oj.2024.095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"H2Open Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/h2oj.2024.095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of hydraulic adequacy of runoff disposal in urban watersheds of rapidly expanding town
The growth of cities significantly alters natural catchments by increasing impervious surfaces and necessitating the installation of an appropriate drainage system. Arba Minch is one of the rapidly expanding and facing street flooding. The objective of this study is to assess the hydraulic adequacy of runoff disposal in urban watersheds located in rapidly expanding towns. Stormwater Management Model (SWMM) was used to perform rainfall-runoff simulation. Personal Computer SWMM (PCSWMM) was used to carry out calibration and validation in the watershed. The primary and secondary data were used. Five Land Use/Land Cover (LULC) categories identified were asphalt, coble, vegetation, bare soil, and roof. The result shows 33.49% area is covered with highly impervious land cover. The overall calibration and validation are a very good fit with the observed flow. The total runoff volume of 9494.15 km3 was generated from the town area which is 13.7 km2. The peak runoff determined from 373 sub-catchments varies from 0.01 to 4.48 m3s−1. According to the simulated result, 7.46% of existing drainage channels were flooded. Anticipating future runoff generation, this study evaluates the inadequacy of existing drainage channels in urban areas. Hydraulic analysis is recommended before constructing drainage structures to protect flooding effect.