L. Piron, C. Paz-Soldan, L. Pigatto, P. Zanca, Olivier Sauter, T. Pütterich, Paolo Bettini, M. Bonotto, Geoffrey Cunningham, Gianmaria De Tommasi, Nicolò Ferron, Matteo Gambrioli, Georgina Graham, Peter C de Vries, Y. Gribov, Q. Hu, K. Kirov, N. Logan, Morten Lennholm, Massimiliano Mattei, Marc Maraschek, Tomas Markovic, G. Manduchi, Piero Martin, A. Pironti, A. Polevoi, T. Ravensbergen, David Anthony Ryan, B. Sieglin, W. Suttrop, D. Terranova, M. Teschke, Daniel F. Valcarcel, Charles Vincent
{"title":"面向热核实验堆运行的误差场检测和校正研究","authors":"L. Piron, C. Paz-Soldan, L. Pigatto, P. Zanca, Olivier Sauter, T. Pütterich, Paolo Bettini, M. Bonotto, Geoffrey Cunningham, Gianmaria De Tommasi, Nicolò Ferron, Matteo Gambrioli, Georgina Graham, Peter C de Vries, Y. Gribov, Q. Hu, K. Kirov, N. Logan, Morten Lennholm, Massimiliano Mattei, Marc Maraschek, Tomas Markovic, G. Manduchi, Piero Martin, A. Pironti, A. Polevoi, T. Ravensbergen, David Anthony Ryan, B. Sieglin, W. Suttrop, D. Terranova, M. Teschke, Daniel F. Valcarcel, Charles Vincent","doi":"10.1088/1741-4326/ad3fcd","DOIUrl":null,"url":null,"abstract":"\n In magnetic fusion devices, error field sources, spurious magnetic field perturbations, need to be identified and corrected for safe and stable (disruption-free) tokamak operation. Within Work Package Tokamak Exploitation RT04, a series of studies have been carried out to test the portability of the novel non-disruptive method, designed and tested in DIII-D (Paz-Soldan C. et al, Nuclear Fusion 62 (2022) 126007), and to perform an assessment of model-based EF control strategies towards their applicability in ITER. In this paper, the lessons learned, the physical mechanism behind the magnetic island healing, which relies on enhanced viscous torque that acts against the static electro-magnetic torque, and the main control achievements are reported, together with the first design of the asynchronous EF correction current/density controller for ITER.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"119 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error field detection and correction studies towards ITER operation\",\"authors\":\"L. Piron, C. Paz-Soldan, L. Pigatto, P. Zanca, Olivier Sauter, T. Pütterich, Paolo Bettini, M. Bonotto, Geoffrey Cunningham, Gianmaria De Tommasi, Nicolò Ferron, Matteo Gambrioli, Georgina Graham, Peter C de Vries, Y. Gribov, Q. Hu, K. Kirov, N. Logan, Morten Lennholm, Massimiliano Mattei, Marc Maraschek, Tomas Markovic, G. Manduchi, Piero Martin, A. Pironti, A. Polevoi, T. Ravensbergen, David Anthony Ryan, B. Sieglin, W. Suttrop, D. Terranova, M. Teschke, Daniel F. Valcarcel, Charles Vincent\",\"doi\":\"10.1088/1741-4326/ad3fcd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In magnetic fusion devices, error field sources, spurious magnetic field perturbations, need to be identified and corrected for safe and stable (disruption-free) tokamak operation. Within Work Package Tokamak Exploitation RT04, a series of studies have been carried out to test the portability of the novel non-disruptive method, designed and tested in DIII-D (Paz-Soldan C. et al, Nuclear Fusion 62 (2022) 126007), and to perform an assessment of model-based EF control strategies towards their applicability in ITER. In this paper, the lessons learned, the physical mechanism behind the magnetic island healing, which relies on enhanced viscous torque that acts against the static electro-magnetic torque, and the main control achievements are reported, together with the first design of the asynchronous EF correction current/density controller for ITER.\",\"PeriodicalId\":503481,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"119 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad3fcd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad3fcd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在磁核聚变装置中,需要识别和纠正错误磁场源、虚假磁场扰动,以实现托卡马克的安全稳定(无干扰)运行。在托卡马克开发 RT04 工作包中,开展了一系列研究,以测试在 DIII-D 中设计和测试的新型无干扰方法的可移植性(Paz-Soldan C. 等人,核聚变 62 (2022) 126007),并对基于模型的 EF 控制策略进行评估,以确定其在热核聚变实验堆中的适用性。本文报告了汲取的经验教训、磁岛愈合背后的物理机制(依靠增强的粘性力矩对抗静态电磁力矩)和主要控制成果,以及用于热核实验堆的异步外频修正电流/密度控制器的首次设计。
Error field detection and correction studies towards ITER operation
In magnetic fusion devices, error field sources, spurious magnetic field perturbations, need to be identified and corrected for safe and stable (disruption-free) tokamak operation. Within Work Package Tokamak Exploitation RT04, a series of studies have been carried out to test the portability of the novel non-disruptive method, designed and tested in DIII-D (Paz-Soldan C. et al, Nuclear Fusion 62 (2022) 126007), and to perform an assessment of model-based EF control strategies towards their applicability in ITER. In this paper, the lessons learned, the physical mechanism behind the magnetic island healing, which relies on enhanced viscous torque that acts against the static electro-magnetic torque, and the main control achievements are reported, together with the first design of the asynchronous EF correction current/density controller for ITER.