解密木材对葡萄树干病害相关真菌的转录组和代谢组反应

Ana Romeo-Oliván, J. Chervin, Coralie Breton, Virginie Puech-Pagès, Sylvie Fournier, Guillaume Marti, Olivier Rodrigues, Jean Daydé, Bernard Dumas, Alban Jacques
{"title":"解密木材对葡萄树干病害相关真菌的转录组和代谢组反应","authors":"Ana Romeo-Oliván, J. Chervin, Coralie Breton, Virginie Puech-Pagès, Sylvie Fournier, Guillaume Marti, Olivier Rodrigues, Jean Daydé, Bernard Dumas, Alban Jacques","doi":"10.1094/phytofr-10-23-0132-r","DOIUrl":null,"url":null,"abstract":"Esca is one of the main grapevine trunk diseases affecting vineyards worldwide. Phaeoacremonium minimum and Phaeomoniella chlamydospora are thought to be two of the main causal agents of this disease. However, the molecular mechanisms underlying plant defense responses in the grapevine trunk against esca-associated pathogens are poorly understood. To provide a first glimpse on the trunk responses to P. minimum and P. chlamydospora, transcriptomic and metabolomic analyses were performed to compare and contrast host responses to these pathogens. Transcriptomic analysis revealed different gene expression reprogramming in the trunk in response to each fungus. Main significant differences were found among genes associated with Secondary Metabolism, Signaling and Hormone Signaling. An untargeted liquid chromatography–high resolution mass spectrometry metabolomic approach performed 3 weeks after inoculation was used and dereplication mainly highlighted flavonoids and stilbenes as plant defense metabolites in the infected trunk. Some metabolites were overproduced with both fungi, but specific responses were also observed. Particularly, a lipophilic flavonoid cluster was emphasized after P. minimum inoculation. The assessment of fungal infection 6 wpi showed a higher number of copies of P. minimum than P. chlamydospora. This dissimilarity in the level of colonization could be linked somehow to the metabolomic responses observed. Our results reveal both different gene expression reprogramming and metabolomic specific signatures depending on the wood pathogen. Altogether, these observations suggest that grapevine trunk can differently perceive and respond to P. minimum and P. chlamydospora.","PeriodicalId":508090,"journal":{"name":"PhytoFrontiers™","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering transcriptomic and metabolomic wood responses to grapevine trunk diseases-associated fungi\",\"authors\":\"Ana Romeo-Oliván, J. Chervin, Coralie Breton, Virginie Puech-Pagès, Sylvie Fournier, Guillaume Marti, Olivier Rodrigues, Jean Daydé, Bernard Dumas, Alban Jacques\",\"doi\":\"10.1094/phytofr-10-23-0132-r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Esca is one of the main grapevine trunk diseases affecting vineyards worldwide. Phaeoacremonium minimum and Phaeomoniella chlamydospora are thought to be two of the main causal agents of this disease. However, the molecular mechanisms underlying plant defense responses in the grapevine trunk against esca-associated pathogens are poorly understood. To provide a first glimpse on the trunk responses to P. minimum and P. chlamydospora, transcriptomic and metabolomic analyses were performed to compare and contrast host responses to these pathogens. Transcriptomic analysis revealed different gene expression reprogramming in the trunk in response to each fungus. Main significant differences were found among genes associated with Secondary Metabolism, Signaling and Hormone Signaling. An untargeted liquid chromatography–high resolution mass spectrometry metabolomic approach performed 3 weeks after inoculation was used and dereplication mainly highlighted flavonoids and stilbenes as plant defense metabolites in the infected trunk. Some metabolites were overproduced with both fungi, but specific responses were also observed. Particularly, a lipophilic flavonoid cluster was emphasized after P. minimum inoculation. The assessment of fungal infection 6 wpi showed a higher number of copies of P. minimum than P. chlamydospora. This dissimilarity in the level of colonization could be linked somehow to the metabolomic responses observed. Our results reveal both different gene expression reprogramming and metabolomic specific signatures depending on the wood pathogen. Altogether, these observations suggest that grapevine trunk can differently perceive and respond to P. minimum and P. chlamydospora.\",\"PeriodicalId\":508090,\"journal\":{\"name\":\"PhytoFrontiers™\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhytoFrontiers™\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1094/phytofr-10-23-0132-r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhytoFrontiers™","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1094/phytofr-10-23-0132-r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

埃斯卡病是影响世界各地葡萄园的主要葡萄树干病害之一。Phaeoacremonium minimum 和 Phaeomoniella chlamydospora 被认为是这种病害的两种主要病原体。然而,人们对葡萄树干针对埃斯卡相关病原体的植物防御反应的分子机制知之甚少。为了初步了解树干对最小葡萄孢和衣壳孢的反应,研究人员进行了转录组和代谢组分析,以比较和对比宿主对这些病原体的反应。转录组分析表明,树干对每种真菌的反应都有不同的基因表达重编程。与次生代谢、信号转导和激素信号转导相关的基因之间存在主要的显著差异。在接种 3 周后进行的非靶向液相色谱-高分辨质谱代谢组学分析主要强调了黄酮类化合物和二苯乙烯类化合物是受感染树干中的植物防御代谢物。两种真菌都会过量产生一些代谢物,但也观察到了特殊的反应。特别是,在接种最小黄化曲霉后,亲脂性黄酮类化合物集群得到了强调。对真菌感染的评估显示,在 6 wpi 后,最低限度真菌的拷贝数高于衣孢子菌。定殖水平的差异可能与观察到的代谢组反应有某种联系。我们的研究结果揭示了不同的基因表达重编程和代谢组特异性特征,这取决于木材病原体。总之,这些观察结果表明,葡萄树干能以不同的方式感知和应对最小葡萄孢菌和衣孢菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciphering transcriptomic and metabolomic wood responses to grapevine trunk diseases-associated fungi
Esca is one of the main grapevine trunk diseases affecting vineyards worldwide. Phaeoacremonium minimum and Phaeomoniella chlamydospora are thought to be two of the main causal agents of this disease. However, the molecular mechanisms underlying plant defense responses in the grapevine trunk against esca-associated pathogens are poorly understood. To provide a first glimpse on the trunk responses to P. minimum and P. chlamydospora, transcriptomic and metabolomic analyses were performed to compare and contrast host responses to these pathogens. Transcriptomic analysis revealed different gene expression reprogramming in the trunk in response to each fungus. Main significant differences were found among genes associated with Secondary Metabolism, Signaling and Hormone Signaling. An untargeted liquid chromatography–high resolution mass spectrometry metabolomic approach performed 3 weeks after inoculation was used and dereplication mainly highlighted flavonoids and stilbenes as plant defense metabolites in the infected trunk. Some metabolites were overproduced with both fungi, but specific responses were also observed. Particularly, a lipophilic flavonoid cluster was emphasized after P. minimum inoculation. The assessment of fungal infection 6 wpi showed a higher number of copies of P. minimum than P. chlamydospora. This dissimilarity in the level of colonization could be linked somehow to the metabolomic responses observed. Our results reveal both different gene expression reprogramming and metabolomic specific signatures depending on the wood pathogen. Altogether, these observations suggest that grapevine trunk can differently perceive and respond to P. minimum and P. chlamydospora.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Draft Genome Resource of a Wolbachia Endosymbiont in Heterodera humuli Unstable Transgene Expression Affects Long-Term Efficacy of the Arabidopsis Immune Receptor EFR to Confer Quantitative Resistance to Citrus Canker Under Field Conditions First complete genome sequence resource of a Lettuce mosaic virus isolate from the United States of America Effect of calcium propionate dip and spray applications on botrytis blight of ornamental plants A molecular method to assess viability of Phytophthora in infected wood following heat treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1