Dr. Bingyuan Guo, Dr. Yun Zhang, Qianyuan Ren, Dr. Ke Zhou, Dr. Lei Liu, Prof. Hai-Chen Wu
{"title":"通过纳米孔中基于多肽核酸的三重分子信标同时检测多种生物标记物","authors":"Dr. Bingyuan Guo, Dr. Yun Zhang, Qianyuan Ren, Dr. Ke Zhou, Dr. Lei Liu, Prof. Hai-Chen Wu","doi":"10.1002/anse.202400002","DOIUrl":null,"url":null,"abstract":"<p>In this study, we propose an enhanced nanopore sensing strategy that utilizes a peptide nucleic acid (PNA)-based triplex molecular beacon sensor to achieve the simultaneous detection of multiple biomarkers with a high degree of sensitivity. The sensor is a triplex switch composed of a triplex-forming DNA strand and an oligo-arginine-tagged PNA strand, serving as the target recognition moiety and signal output element, respectively. Upon target binding to the recognition element of the sensor, the PNA signal output strand is released and a hybrid complex of the target-DNA recognition strand is formed simultaneously. Due to the positive charges carried by the PNA-Arg strands, they could be driven through the nanopore under positive electric field, effectively eliminating interferences from co-existing target-DNA complexes. This approach enables label-free, one-step detection of targets without requiring complex treatments and procedures. Leveraging the modular properties of DNA recognition strand, this method can be applied universally, and here, we successfully demonstrate its application using three SARS-CoV-2 related biomarkers.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400002","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Detection of Multiple Biomarkers by Peptide Nucleic Acids-Based Triplex Molecular Beacon in a Nanopore\",\"authors\":\"Dr. Bingyuan Guo, Dr. Yun Zhang, Qianyuan Ren, Dr. Ke Zhou, Dr. Lei Liu, Prof. Hai-Chen Wu\",\"doi\":\"10.1002/anse.202400002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we propose an enhanced nanopore sensing strategy that utilizes a peptide nucleic acid (PNA)-based triplex molecular beacon sensor to achieve the simultaneous detection of multiple biomarkers with a high degree of sensitivity. The sensor is a triplex switch composed of a triplex-forming DNA strand and an oligo-arginine-tagged PNA strand, serving as the target recognition moiety and signal output element, respectively. Upon target binding to the recognition element of the sensor, the PNA signal output strand is released and a hybrid complex of the target-DNA recognition strand is formed simultaneously. Due to the positive charges carried by the PNA-Arg strands, they could be driven through the nanopore under positive electric field, effectively eliminating interferences from co-existing target-DNA complexes. This approach enables label-free, one-step detection of targets without requiring complex treatments and procedures. Leveraging the modular properties of DNA recognition strand, this method can be applied universally, and here, we successfully demonstrate its application using three SARS-CoV-2 related biomarkers.</p>\",\"PeriodicalId\":72192,\"journal\":{\"name\":\"Analysis & sensing\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anse.202400002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202400002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,我们提出了一种增强型纳米孔传感策略,利用基于肽核酸(PNA)的三重分子信标传感器,实现高灵敏度地同时检测多种生物标记物。该传感器是一个三重开关,由三重形成的 DNA 链和寡精氨酸标记的 PNA 链组成,分别作为目标识别分子和信号输出元件。当目标物与传感器的识别元件结合时,PNA 信号输出链被释放,同时形成目标物-DNA 识别链的杂交复合物。由于 PNA-Arg 链带有正电荷,它们可以在正电场的作用下通过纳米孔,从而有效地消除了同时存在的靶标-DNA 复合物的干扰。这种方法无需复杂的处理和程序,就能实现无标记、一步到位的目标检测。利用 DNA 识别链的模块化特性,这种方法可以普遍应用,在此,我们利用三种与 SARS-CoV-2 相关的生物标记物成功地展示了这种方法的应用。
Simultaneous Detection of Multiple Biomarkers by Peptide Nucleic Acids-Based Triplex Molecular Beacon in a Nanopore
In this study, we propose an enhanced nanopore sensing strategy that utilizes a peptide nucleic acid (PNA)-based triplex molecular beacon sensor to achieve the simultaneous detection of multiple biomarkers with a high degree of sensitivity. The sensor is a triplex switch composed of a triplex-forming DNA strand and an oligo-arginine-tagged PNA strand, serving as the target recognition moiety and signal output element, respectively. Upon target binding to the recognition element of the sensor, the PNA signal output strand is released and a hybrid complex of the target-DNA recognition strand is formed simultaneously. Due to the positive charges carried by the PNA-Arg strands, they could be driven through the nanopore under positive electric field, effectively eliminating interferences from co-existing target-DNA complexes. This approach enables label-free, one-step detection of targets without requiring complex treatments and procedures. Leveraging the modular properties of DNA recognition strand, this method can be applied universally, and here, we successfully demonstrate its application using three SARS-CoV-2 related biomarkers.