利用边缘衍射仪进行孔边缘计量和检测

Kuan Lu, ChaBum Lee
{"title":"利用边缘衍射仪进行孔边缘计量和检测","authors":"Kuan Lu, ChaBum Lee","doi":"10.1115/1.4065314","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a novel hole edge inspection and metrology technology by edge diffractometry, which occurs when light interacts with the hole edge. The proposed method allows for simultaneous characterization of hole part error and edge roughness conditions. Edge diffraction occurs as light bends at a sharp edge. Such a diffractive fringe pattern, the so-called interferogram, is directly related to edge geometry and roughness. Image-based diffractometry inspection technology was developed to capture the diffractive fringe patterns. The collected fringe patterns were analyzed through statistical feature extraction methods, and numerical results such as roundness index, concentricity, and via edge roughness (VER) were obtained. Through-focus scanning optical microscopy (TSOM) was also utilized to perform three-dimensional characterization of the hole features along the depth direction. As a result, the proposed method could characterize hole part error and evaluate its roughness conditions. This study showed the potential to be adapted for automatic optical inspection for advancing microelectronics and semiconductor packaging technology.","PeriodicalId":507815,"journal":{"name":"Journal of Manufacturing Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hole Edge Metrology and Inspection by Edge Diffractometry\",\"authors\":\"Kuan Lu, ChaBum Lee\",\"doi\":\"10.1115/1.4065314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper introduces a novel hole edge inspection and metrology technology by edge diffractometry, which occurs when light interacts with the hole edge. The proposed method allows for simultaneous characterization of hole part error and edge roughness conditions. Edge diffraction occurs as light bends at a sharp edge. Such a diffractive fringe pattern, the so-called interferogram, is directly related to edge geometry and roughness. Image-based diffractometry inspection technology was developed to capture the diffractive fringe patterns. The collected fringe patterns were analyzed through statistical feature extraction methods, and numerical results such as roundness index, concentricity, and via edge roughness (VER) were obtained. Through-focus scanning optical microscopy (TSOM) was also utilized to perform three-dimensional characterization of the hole features along the depth direction. As a result, the proposed method could characterize hole part error and evaluate its roughness conditions. This study showed the potential to be adapted for automatic optical inspection for advancing microelectronics and semiconductor packaging technology.\",\"PeriodicalId\":507815,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新颖的孔边缘检测和计量技术,该技术利用光与孔边缘相互作用时产生的边缘衍射。所提出的方法可同时鉴定孔零件误差和边缘粗糙度状况。边缘衍射发生在光在尖锐边缘弯曲时。这种衍射条纹图案,即所谓的干涉图,与边缘几何形状和粗糙度直接相关。我们开发了基于图像的衍射检测技术来捕捉衍射条纹图案。通过统计特征提取方法对采集到的条纹图案进行分析,得出圆度指数、同心度和边缘粗糙度(VER)等数值结果。此外,还利用通焦扫描光学显微镜(TSOM)沿深度方向对孔洞特征进行三维表征。因此,所提出的方法可以表征孔零件误差并评估其粗糙度条件。这项研究显示了自动光学检测的应用潜力,可促进微电子和半导体封装技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hole Edge Metrology and Inspection by Edge Diffractometry
This paper introduces a novel hole edge inspection and metrology technology by edge diffractometry, which occurs when light interacts with the hole edge. The proposed method allows for simultaneous characterization of hole part error and edge roughness conditions. Edge diffraction occurs as light bends at a sharp edge. Such a diffractive fringe pattern, the so-called interferogram, is directly related to edge geometry and roughness. Image-based diffractometry inspection technology was developed to capture the diffractive fringe patterns. The collected fringe patterns were analyzed through statistical feature extraction methods, and numerical results such as roundness index, concentricity, and via edge roughness (VER) were obtained. Through-focus scanning optical microscopy (TSOM) was also utilized to perform three-dimensional characterization of the hole features along the depth direction. As a result, the proposed method could characterize hole part error and evaluate its roughness conditions. This study showed the potential to be adapted for automatic optical inspection for advancing microelectronics and semiconductor packaging technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Concept of error compensation for non-orthogonality in two-axis displacement measurement system utilizing single grating scale and Littrow configuration EFFECT OF SHEAR LOCALIZATION ON SURFACE RESIDUAL STRESS DISTRIBUTION IN MACHINING OF WASPALOY DRY GRINDING: A MORE SUSTAINABLE MANUFACTURING PROCESS FOR THE PRODUCTION OF AUTOMOTIVE GEARS Nanotechnology-Enabled Rapid Investment Casting of Aluminum Alloy 7075 BRIDGING DATA GAPS: A FEDERATED LEARNING APPROACH TO HEAT EMISSION PREDICTION IN LASER POWDER BED FUSION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1