西格陵兰西西米乌特山区目前和未来岩壁永久冻土分布建模

M. Marcer, P. Duvillard, Soňa Tomaškovičová, S. Nielsen, André Revil, T. Ingeman‐Nielsen
{"title":"西格陵兰西西米乌特山区目前和未来岩壁永久冻土分布建模","authors":"M. Marcer, P. Duvillard, Soňa Tomaškovičová, S. Nielsen, André Revil, T. Ingeman‐Nielsen","doi":"10.5194/tc-18-1753-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Degrading rock wall permafrost was found responsible for the increase in rockfall and landslide activity in several cold mountain regions across the globe. In Greenland, rock wall permafrost has so far received little attention from the scientific community, despite mountains being a predominant feature on the ice-free coastline and landslide activity being significant. In this study, we aim to make a first step towards a better understanding of rock wall permafrost in Greenland by modelling rock wall temperatures in the mountain area around the town of Sisimiut, which is 68° N on the west coast of Greenland. We first acquire rock surface temperature (RST) data for the period September 2020–September 2022 to model rock surface temperatures from weather forcing. The model is then applied to weather data from 1870 to 2022, generating rock surface temperatures to force transient heat transfer simulations over the same period. By extrapolating this method at the landscape scale, we obtain permafrost distribution maps and ad hoc simulations for complex topographies. Our model results are compared to temperature data from two lowland boreholes (100 m depth) and geophysical data describing frozen and unfrozen conditions across a mid-elevation mountain ridge. Finally, we use regional carbon pathway scenarios 2.6 and 8.5 to evaluate future evolution of rock wall temperatures until the end of the 21st century. Our data and simulation describe discontinuous permafrost distribution in rock walls up to roughly 400 m a.s.l. Future scenarios suggest a decline of deep frozen bodies up to 800 m a.s.l., i.e. the highest summits in the area. In summary, this study depicts a picture of warm permafrost in this area, highlighting its sensitivity to ongoing climate change.\n","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"38 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling present and future rock wall permafrost distribution in the Sisimiut mountain area, West Greenland\",\"authors\":\"M. Marcer, P. Duvillard, Soňa Tomaškovičová, S. Nielsen, André Revil, T. Ingeman‐Nielsen\",\"doi\":\"10.5194/tc-18-1753-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Degrading rock wall permafrost was found responsible for the increase in rockfall and landslide activity in several cold mountain regions across the globe. In Greenland, rock wall permafrost has so far received little attention from the scientific community, despite mountains being a predominant feature on the ice-free coastline and landslide activity being significant. In this study, we aim to make a first step towards a better understanding of rock wall permafrost in Greenland by modelling rock wall temperatures in the mountain area around the town of Sisimiut, which is 68° N on the west coast of Greenland. We first acquire rock surface temperature (RST) data for the period September 2020–September 2022 to model rock surface temperatures from weather forcing. The model is then applied to weather data from 1870 to 2022, generating rock surface temperatures to force transient heat transfer simulations over the same period. By extrapolating this method at the landscape scale, we obtain permafrost distribution maps and ad hoc simulations for complex topographies. Our model results are compared to temperature data from two lowland boreholes (100 m depth) and geophysical data describing frozen and unfrozen conditions across a mid-elevation mountain ridge. Finally, we use regional carbon pathway scenarios 2.6 and 8.5 to evaluate future evolution of rock wall temperatures until the end of the 21st century. Our data and simulation describe discontinuous permafrost distribution in rock walls up to roughly 400 m a.s.l. Future scenarios suggest a decline of deep frozen bodies up to 800 m a.s.l., i.e. the highest summits in the area. In summary, this study depicts a picture of warm permafrost in this area, highlighting its sensitivity to ongoing climate change.\\n\",\"PeriodicalId\":509217,\"journal\":{\"name\":\"The Cryosphere\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Cryosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/tc-18-1753-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Cryosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/tc-18-1753-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在全球多个寒冷山区,岩壁永久冻土的退化被认为是导致落石和滑坡活动增加的原因。在格陵兰岛,尽管山脉是无冰海岸线的主要特征,滑坡活动也很严重,但岩壁永久冻土迄今为止很少受到科学界的关注。在这项研究中,我们旨在通过模拟格陵兰岛西海岸北纬 68° 的西西米尤特镇周围山区的岩壁温度,为更好地了解格陵兰岛的岩壁永久冻土迈出第一步。我们首先获取 2020 年 9 月至 2022 年 9 月期间的岩石表面温度 (RST) 数据,以模拟来自天气影响的岩石表面温度。然后,将该模型应用于 1870 年至 2022 年的天气数据,生成岩石表面温度,从而对同期的瞬态传热进行模拟。通过在地貌尺度上推断这种方法,我们获得了永久冻土分布图,并对复杂地形进行了特别模拟。我们将模型结果与两个低地钻孔(100 米深)的温度数据以及描述中海拔山脊冻结和未冻结条件的地球物理数据进行了比较。最后,我们利用区域碳途径方案 2.6 和 8.5 评估了 21 世纪末之前岩壁温度的未来演变。我们的数据和模拟结果表明,在海拔 400 米以下的岩壁中存在不连续的永久冻土分布。未来的情景假设表明,海拔 800 米以下(即该地区的最高峰)的深层冰冻体将会减少。总之,这项研究描绘了该地区暖永久冻土的图景,突出了其对当前气候变化的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling present and future rock wall permafrost distribution in the Sisimiut mountain area, West Greenland
Abstract. Degrading rock wall permafrost was found responsible for the increase in rockfall and landslide activity in several cold mountain regions across the globe. In Greenland, rock wall permafrost has so far received little attention from the scientific community, despite mountains being a predominant feature on the ice-free coastline and landslide activity being significant. In this study, we aim to make a first step towards a better understanding of rock wall permafrost in Greenland by modelling rock wall temperatures in the mountain area around the town of Sisimiut, which is 68° N on the west coast of Greenland. We first acquire rock surface temperature (RST) data for the period September 2020–September 2022 to model rock surface temperatures from weather forcing. The model is then applied to weather data from 1870 to 2022, generating rock surface temperatures to force transient heat transfer simulations over the same period. By extrapolating this method at the landscape scale, we obtain permafrost distribution maps and ad hoc simulations for complex topographies. Our model results are compared to temperature data from two lowland boreholes (100 m depth) and geophysical data describing frozen and unfrozen conditions across a mid-elevation mountain ridge. Finally, we use regional carbon pathway scenarios 2.6 and 8.5 to evaluate future evolution of rock wall temperatures until the end of the 21st century. Our data and simulation describe discontinuous permafrost distribution in rock walls up to roughly 400 m a.s.l. Future scenarios suggest a decline of deep frozen bodies up to 800 m a.s.l., i.e. the highest summits in the area. In summary, this study depicts a picture of warm permafrost in this area, highlighting its sensitivity to ongoing climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Snow redistribution in an intermediate-complexity snow hydrology modelling framework Spatial variation in the specific surface area of surface snow measured along the traverse route from the coast to Dome Fuji, Antarctica, during austral summer Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data Spectral induced polarization imaging to monitor seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1