Hamideh Habibi, Amanj Aminnzhad, Mohammad Javad Khosrowjerdi
{"title":"基于风力涡轮机高增益观测器的同轴双转子磁齿轮非线性控制","authors":"Hamideh Habibi, Amanj Aminnzhad, Mohammad Javad Khosrowjerdi","doi":"10.1049/cth2.12666","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a nonlinear control law with a dynamic controller based on high gain observer (HGO) for a co-axial double rotor magnetic gear (CADRMG) based on Halbach array used in wind turbines. The generalized canonical form (GCF) is used to normalize the nonlinear augmented system to achieve the dynamic control signal with a chain of integrator of system output. In addition, a tracking problem is defined to track high speed rotor (HSR) with respect to GCF. On the other hand, the HGO is used to estimate the error tracking at the expense of nonlinear terms. Furthermore, the nonlinear system observability of the augmented system is evaluated. A dynamic control law is used to solve the tracking problem based on HGO. This controller can eliminate the effect of load torque as a constant and unknown disturbance in the closed-loop system. Moreover, the closed-loop stability of the system under dynamic signal control is guaranteed. The system states estimation is calculated by recursive equations from tracking error estimations. Finally, numerical simulations are given to illustrate the theoretical results of proposed system.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 10","pages":"1314-1327"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12666","citationCount":"0","resultStr":"{\"title\":\"Nonlinear control of coaxial double rotor magnetic gear based on high gain observer in wind turbine\",\"authors\":\"Hamideh Habibi, Amanj Aminnzhad, Mohammad Javad Khosrowjerdi\",\"doi\":\"10.1049/cth2.12666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a nonlinear control law with a dynamic controller based on high gain observer (HGO) for a co-axial double rotor magnetic gear (CADRMG) based on Halbach array used in wind turbines. The generalized canonical form (GCF) is used to normalize the nonlinear augmented system to achieve the dynamic control signal with a chain of integrator of system output. In addition, a tracking problem is defined to track high speed rotor (HSR) with respect to GCF. On the other hand, the HGO is used to estimate the error tracking at the expense of nonlinear terms. Furthermore, the nonlinear system observability of the augmented system is evaluated. A dynamic control law is used to solve the tracking problem based on HGO. This controller can eliminate the effect of load torque as a constant and unknown disturbance in the closed-loop system. Moreover, the closed-loop stability of the system under dynamic signal control is guaranteed. The system states estimation is calculated by recursive equations from tracking error estimations. Finally, numerical simulations are given to illustrate the theoretical results of proposed system.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 10\",\"pages\":\"1314-1327\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12666\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12666\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12666","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Nonlinear control of coaxial double rotor magnetic gear based on high gain observer in wind turbine
This paper proposes a nonlinear control law with a dynamic controller based on high gain observer (HGO) for a co-axial double rotor magnetic gear (CADRMG) based on Halbach array used in wind turbines. The generalized canonical form (GCF) is used to normalize the nonlinear augmented system to achieve the dynamic control signal with a chain of integrator of system output. In addition, a tracking problem is defined to track high speed rotor (HSR) with respect to GCF. On the other hand, the HGO is used to estimate the error tracking at the expense of nonlinear terms. Furthermore, the nonlinear system observability of the augmented system is evaluated. A dynamic control law is used to solve the tracking problem based on HGO. This controller can eliminate the effect of load torque as a constant and unknown disturbance in the closed-loop system. Moreover, the closed-loop stability of the system under dynamic signal control is guaranteed. The system states estimation is calculated by recursive equations from tracking error estimations. Finally, numerical simulations are given to illustrate the theoretical results of proposed system.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.