使用增强型蚁群算法进行电动汽车动态节能路径规划

LI Jian, LI Jie, Hongji Fang, Junfeng Jiang, I. JianL
{"title":"使用增强型蚁群算法进行电动汽车动态节能路径规划","authors":"LI Jian, LI Jie, Hongji Fang, Junfeng Jiang, I. JianL","doi":"10.17559/tv-20230510000618","DOIUrl":null,"url":null,"abstract":": Electric vehicles (EVs) energy efficient path planning is crucial for maximizing the range of EVs. However, existing path planning algorithms often prioritize least time or shortest path without considering energy efficiency, leading to issues such as long computation time, slow convergence, and suboptimal solutions in complex environments. To address these challenges, this study proposes an improved ant colony optimization (E-ACO) algorithm for dynamic energy efficient path planning of EVs. The E-ACO algorithm incorporates a traffic flow prediction model and an energy consumption model specific to EVs. By redesigning heuristic factors and state transition rules, the algorithm enhances the efficiency and accuracy of path planning. Moreover, to address the challenge of selecting optimal charging station locations based on existing battery levels, a charging path planning method is introduced. This method utilizes the E-ACO algorithm and employs charging station pre-screening strategies to identify the most suitable charging station for completing the charging process. Experimental results show that the E-ACO algorithm reduces energy consumption by approximately 7% compared to the traditional ant colony optimization (ACO) algorithm. Additionally, through data analysis, a pre-screening threshold of 10 charging stations is determined based on the relationship between distance and energy consumption. To provide a visual representation of the path planning results, software is used to display the optimized paths. This allows users to easily interpret and analyze the recommended routes. Overall, the proposed E-ACO algorithm offers an effective and efficient solution for energy-efficient path planning in EVs. The incorporation of charging station pre-screening strategies further enhances the charging process. The study's findings contribute to the development of more sustainable and efficient EV routing strategies, benefiting both EV users and the environment.","PeriodicalId":510054,"journal":{"name":"Tehnicki vjesnik - Technical Gazette","volume":"47 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Energy-Efficient Path Planning for Electric Vehicles Using an Enhanced Ant Colony Algorithm\",\"authors\":\"LI Jian, LI Jie, Hongji Fang, Junfeng Jiang, I. JianL\",\"doi\":\"10.17559/tv-20230510000618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Electric vehicles (EVs) energy efficient path planning is crucial for maximizing the range of EVs. However, existing path planning algorithms often prioritize least time or shortest path without considering energy efficiency, leading to issues such as long computation time, slow convergence, and suboptimal solutions in complex environments. To address these challenges, this study proposes an improved ant colony optimization (E-ACO) algorithm for dynamic energy efficient path planning of EVs. The E-ACO algorithm incorporates a traffic flow prediction model and an energy consumption model specific to EVs. By redesigning heuristic factors and state transition rules, the algorithm enhances the efficiency and accuracy of path planning. Moreover, to address the challenge of selecting optimal charging station locations based on existing battery levels, a charging path planning method is introduced. This method utilizes the E-ACO algorithm and employs charging station pre-screening strategies to identify the most suitable charging station for completing the charging process. Experimental results show that the E-ACO algorithm reduces energy consumption by approximately 7% compared to the traditional ant colony optimization (ACO) algorithm. Additionally, through data analysis, a pre-screening threshold of 10 charging stations is determined based on the relationship between distance and energy consumption. To provide a visual representation of the path planning results, software is used to display the optimized paths. This allows users to easily interpret and analyze the recommended routes. Overall, the proposed E-ACO algorithm offers an effective and efficient solution for energy-efficient path planning in EVs. The incorporation of charging station pre-screening strategies further enhances the charging process. The study's findings contribute to the development of more sustainable and efficient EV routing strategies, benefiting both EV users and the environment.\",\"PeriodicalId\":510054,\"journal\":{\"name\":\"Tehnicki vjesnik - Technical Gazette\",\"volume\":\"47 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tehnicki vjesnik - Technical Gazette\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17559/tv-20230510000618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki vjesnik - Technical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17559/tv-20230510000618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:电动汽车(EV)的节能路径规划对于最大化电动汽车的续航里程至关重要。然而,现有的路径规划算法通常优先考虑时间最短或最短路径,而不考虑能效,从而导致计算时间长、收敛速度慢以及在复杂环境中求得次优解等问题。为了应对这些挑战,本研究提出了一种改进的蚁群优化(E-ACO)算法,用于电动汽车的动态节能路径规划。E-ACO 算法结合了交通流预测模型和电动汽车特有的能耗模型。通过重新设计启发式因素和状态转换规则,该算法提高了路径规划的效率和准确性。此外,为了解决根据现有电池电量选择最佳充电站位置的难题,还引入了一种充电路径规划方法。该方法利用 E-ACO 算法,并采用充电站预筛选策略来确定最适合完成充电过程的充电站。实验结果表明,与传统的蚁群优化(ACO)算法相比,E-ACO 算法降低了约 7% 的能耗。此外,通过数据分析,根据距离和能耗之间的关系确定了 10 个充电站的预筛选阈值。为了直观地展示路径规划结果,我们使用软件来显示优化路径。这样,用户就可以轻松解读和分析推荐路线。总之,所提出的 E-ACO 算法为电动汽车的节能路径规划提供了一个有效且高效的解决方案。充电站预筛选策略的加入进一步加强了充电过程。研究结果有助于开发更可持续、更高效的电动汽车路径规划策略,使电动汽车用户和环境都能从中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Energy-Efficient Path Planning for Electric Vehicles Using an Enhanced Ant Colony Algorithm
: Electric vehicles (EVs) energy efficient path planning is crucial for maximizing the range of EVs. However, existing path planning algorithms often prioritize least time or shortest path without considering energy efficiency, leading to issues such as long computation time, slow convergence, and suboptimal solutions in complex environments. To address these challenges, this study proposes an improved ant colony optimization (E-ACO) algorithm for dynamic energy efficient path planning of EVs. The E-ACO algorithm incorporates a traffic flow prediction model and an energy consumption model specific to EVs. By redesigning heuristic factors and state transition rules, the algorithm enhances the efficiency and accuracy of path planning. Moreover, to address the challenge of selecting optimal charging station locations based on existing battery levels, a charging path planning method is introduced. This method utilizes the E-ACO algorithm and employs charging station pre-screening strategies to identify the most suitable charging station for completing the charging process. Experimental results show that the E-ACO algorithm reduces energy consumption by approximately 7% compared to the traditional ant colony optimization (ACO) algorithm. Additionally, through data analysis, a pre-screening threshold of 10 charging stations is determined based on the relationship between distance and energy consumption. To provide a visual representation of the path planning results, software is used to display the optimized paths. This allows users to easily interpret and analyze the recommended routes. Overall, the proposed E-ACO algorithm offers an effective and efficient solution for energy-efficient path planning in EVs. The incorporation of charging station pre-screening strategies further enhances the charging process. The study's findings contribute to the development of more sustainable and efficient EV routing strategies, benefiting both EV users and the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Annotation Method of Gangue Data Based on Digital Image Processing Determination of FreeCarbon Dioxide Emissions in Mineral Fertilizers Production Novel Geodetic Fuzzy Subgraph-Based Ranking for Congestion Control in RPL-IoT Network Study and Optimization of Ethanol (LRF) Juliflora Biodiesel (HRF) Fuelled RCCI Engine with and without EGR System Research on Damage Detection of Civil Structures Based on Machine Learning of Multiple Vegetation Index Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1