1982-2020年中国青藏高原高寒草地长期时空连续NDVI产品的开发

Xiali Yang, Xiaodong Huang, Ying Ma, Yuxin Li, Qisheng Feng, Tiangang Liang
{"title":"1982-2020年中国青藏高原高寒草地长期时空连续NDVI产品的开发","authors":"Xiali Yang,&nbsp;Xiaodong Huang,&nbsp;Ying Ma,&nbsp;Yuxin Li,&nbsp;Qisheng Feng,&nbsp;Tiangang Liang","doi":"10.1002/glr2.12076","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The time-series data of the Normalized Difference Vegetation Index (NDVI) is a crucial indicator for global and regional vegetation monitoring. However, the current assessment of global and regional long-term vegetation changes is subject to large uncertainties due to the lack of spatiotemporally continuous time-series data sets.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this study, a long time-series monthly NDVI data set with a spatial resolution of 250 m from 1982 to 2020 was developed by combining Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR (Advanced Very High-Resolution Radiometer) time-series NDVI products using the Random Forest (RF) downscaling model.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Compared to the MODIS NDVI product, the fused product shows RMSE and mean absolute error ranging from 0 to 0.075 and from 0 to 0.05, respectively, with <i>R</i><sup>2</sup> values mostly above 0.7.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The long time-series NDVI products generated in this study are reliable in terms of accuracy and have great potential for long-term dynamic monitoring of terrestrial ecosystems on the Qinghai–Tibet Plateau.</p>\n </section>\n </div>","PeriodicalId":100593,"journal":{"name":"Grassland Research","volume":"3 2","pages":"100-112"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glr2.12076","citationCount":"0","resultStr":"{\"title\":\"Development of long-term spatiotemporal continuous NDVI products for alpine grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China\",\"authors\":\"Xiali Yang,&nbsp;Xiaodong Huang,&nbsp;Ying Ma,&nbsp;Yuxin Li,&nbsp;Qisheng Feng,&nbsp;Tiangang Liang\",\"doi\":\"10.1002/glr2.12076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The time-series data of the Normalized Difference Vegetation Index (NDVI) is a crucial indicator for global and regional vegetation monitoring. However, the current assessment of global and regional long-term vegetation changes is subject to large uncertainties due to the lack of spatiotemporally continuous time-series data sets.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In this study, a long time-series monthly NDVI data set with a spatial resolution of 250 m from 1982 to 2020 was developed by combining Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR (Advanced Very High-Resolution Radiometer) time-series NDVI products using the Random Forest (RF) downscaling model.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Compared to the MODIS NDVI product, the fused product shows RMSE and mean absolute error ranging from 0 to 0.075 and from 0 to 0.05, respectively, with <i>R</i><sup>2</sup> values mostly above 0.7.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The long time-series NDVI products generated in this study are reliable in terms of accuracy and have great potential for long-term dynamic monitoring of terrestrial ecosystems on the Qinghai–Tibet Plateau.</p>\\n </section>\\n </div>\",\"PeriodicalId\":100593,\"journal\":{\"name\":\"Grassland Research\",\"volume\":\"3 2\",\"pages\":\"100-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glr2.12076\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grassland Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/glr2.12076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grassland Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glr2.12076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

归一化差异植被指数(NDVI)的时间序列数据是全球和区域植被监测的重要指标。本研究利用随机森林降尺度模型,将中分辨率成像分光仪(MODIS)和高级甚高分辨率辐射计(AVHRR)的时间序列植被指数产品融合在一起,建立了从1982年到2020年空间分辨率为250米的长时间序列月度植被指数数据集。与 MODIS NDVI 产品相比,融合产品的均方根误差和平均绝对误差分别在 0 至 0.075 和 0 至 0.05 之间,R2 值大多在 0.7 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of long-term spatiotemporal continuous NDVI products for alpine grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China

Background

The time-series data of the Normalized Difference Vegetation Index (NDVI) is a crucial indicator for global and regional vegetation monitoring. However, the current assessment of global and regional long-term vegetation changes is subject to large uncertainties due to the lack of spatiotemporally continuous time-series data sets.

Methods

In this study, a long time-series monthly NDVI data set with a spatial resolution of 250 m from 1982 to 2020 was developed by combining Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR (Advanced Very High-Resolution Radiometer) time-series NDVI products using the Random Forest (RF) downscaling model.

Results

Compared to the MODIS NDVI product, the fused product shows RMSE and mean absolute error ranging from 0 to 0.075 and from 0 to 0.05, respectively, with R2 values mostly above 0.7.

Conclusions

The long time-series NDVI products generated in this study are reliable in terms of accuracy and have great potential for long-term dynamic monitoring of terrestrial ecosystems on the Qinghai–Tibet Plateau.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Forage yield and nutritive value of plantain and chicory for livestock feed at high altitudes in Peru Our world is changing Biocontrol agents enhance plant disease resistance by altering plant microbiomes Effect of fermented total mixed rations on rumen microbial communities and serum metabolites in lambs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1