荚蒾(Syngonium podophyllum)和佩兰(Pilea peperomioides)的叶片展开和叶片生物力学。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-04-15 DOI:10.1088/1748-3190/ad3ed4
Michelle Modert, Thomas Speck, T. Masselter
{"title":"荚蒾(Syngonium podophyllum)和佩兰(Pilea peperomioides)的叶片展开和叶片生物力学。","authors":"Michelle Modert, Thomas Speck, T. Masselter","doi":"10.1088/1748-3190/ad3ed4","DOIUrl":null,"url":null,"abstract":"In nature, leaves and their laminae vary in shape, appearance and unfolding behaviour. We investigated peltate leaves of two model species with peltate leaves and highly different morphology (Syngonium podophyllum and Pilea peperomioides) and two distinct unfolding patterns via time-lapse recordings: we observed successive unfolding of leaf halves in S. podophyllum and simultaneous unfolding in P. peperomioides. Furthermore, we gathered relevant morphological and biomechanical data in juvenile (unfolding) and adult (fully unfolded) plants of both species by measuring the thickness and the tensile modulus of both lamina and veins as a measure of their stiffness. In S. podophyllum, lamina and veins stiffen after unfolding, which may facilitate unfolding in the less stiff juvenile lamina. Secondary venation highly contributes to stiffness in the adult lamina of S. podophyllum, while the lamina itself withstands tensile loads best in parallel direction to secondary veins. In contrast, the leaf of P. peperomioides has a higher lamina thickness and small, non-prominent venation and is equally stiff in every region and direction, although, as is the case in S. podophyllum, thickness and stiffness increase during ontogeny of leaves from juvenile to adult. It could be shown that (changes in) lamina thickness and stiffness can be well correlated with the unfolding processes of both model plants, so that we conclude that functional lamina morphology in juvenile and adult leaf stages and the ontogenetic transition while unfolding is highly dependent on biomechanical characteristics, though other factors are also taken into consideration and discussed.","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaf unfolding and lamina biomechanics in Syngonium podophyllum and Pilea peperomioides.\",\"authors\":\"Michelle Modert, Thomas Speck, T. Masselter\",\"doi\":\"10.1088/1748-3190/ad3ed4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nature, leaves and their laminae vary in shape, appearance and unfolding behaviour. We investigated peltate leaves of two model species with peltate leaves and highly different morphology (Syngonium podophyllum and Pilea peperomioides) and two distinct unfolding patterns via time-lapse recordings: we observed successive unfolding of leaf halves in S. podophyllum and simultaneous unfolding in P. peperomioides. Furthermore, we gathered relevant morphological and biomechanical data in juvenile (unfolding) and adult (fully unfolded) plants of both species by measuring the thickness and the tensile modulus of both lamina and veins as a measure of their stiffness. In S. podophyllum, lamina and veins stiffen after unfolding, which may facilitate unfolding in the less stiff juvenile lamina. Secondary venation highly contributes to stiffness in the adult lamina of S. podophyllum, while the lamina itself withstands tensile loads best in parallel direction to secondary veins. In contrast, the leaf of P. peperomioides has a higher lamina thickness and small, non-prominent venation and is equally stiff in every region and direction, although, as is the case in S. podophyllum, thickness and stiffness increase during ontogeny of leaves from juvenile to adult. It could be shown that (changes in) lamina thickness and stiffness can be well correlated with the unfolding processes of both model plants, so that we conclude that functional lamina morphology in juvenile and adult leaf stages and the ontogenetic transition while unfolding is highly dependent on biomechanical characteristics, though other factors are also taken into consideration and discussed.\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad3ed4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad3ed4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在自然界中,叶子及其叶片的形状、外观和展开行为各不相同。我们通过延时记录研究了两种具有盾形叶片且形态差异很大的模式物种(Syngonium podophyllum 和 Pilea peperomioides)的盾形叶片以及两种不同的展开模式:我们观察到 S. podophyllum 的两半叶片连续展开,而 P. peperomioides 的两半叶片同时展开。此外,我们还通过测量叶片和叶脉的厚度和拉伸模量,收集了这两个物种的幼株(展开)和成株(完全展开)的相关形态学和生物力学数据,以衡量它们的硬度。在 S. podophyllum 中,薄片和叶脉在展开后会变硬,这可能会促进硬度较低的幼年薄片的展开。次生脉对 S. podophyllum 成叶的硬度有很大影响,而叶片本身在次生脉的平行方向上承受拉伸负荷的能力最强。与此相反,P. peperomioides 的叶片厚度较大,叶脉较小且不明显,在各个区域和方向上的硬度相同,不过与 S. podophyllum 的情况一样,叶片的厚度和硬度在从幼叶到成叶的生长过程中会增加。可以证明,叶片厚度和硬度的(变化)与这两种模式植物的展开过程密切相关,因此我们得出结论,幼叶和成叶阶段的功能叶片形态以及展开过程中的本体过渡在很大程度上取决于生物力学特征,尽管其他因素也在考虑和讨论之列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leaf unfolding and lamina biomechanics in Syngonium podophyllum and Pilea peperomioides.
In nature, leaves and their laminae vary in shape, appearance and unfolding behaviour. We investigated peltate leaves of two model species with peltate leaves and highly different morphology (Syngonium podophyllum and Pilea peperomioides) and two distinct unfolding patterns via time-lapse recordings: we observed successive unfolding of leaf halves in S. podophyllum and simultaneous unfolding in P. peperomioides. Furthermore, we gathered relevant morphological and biomechanical data in juvenile (unfolding) and adult (fully unfolded) plants of both species by measuring the thickness and the tensile modulus of both lamina and veins as a measure of their stiffness. In S. podophyllum, lamina and veins stiffen after unfolding, which may facilitate unfolding in the less stiff juvenile lamina. Secondary venation highly contributes to stiffness in the adult lamina of S. podophyllum, while the lamina itself withstands tensile loads best in parallel direction to secondary veins. In contrast, the leaf of P. peperomioides has a higher lamina thickness and small, non-prominent venation and is equally stiff in every region and direction, although, as is the case in S. podophyllum, thickness and stiffness increase during ontogeny of leaves from juvenile to adult. It could be shown that (changes in) lamina thickness and stiffness can be well correlated with the unfolding processes of both model plants, so that we conclude that functional lamina morphology in juvenile and adult leaf stages and the ontogenetic transition while unfolding is highly dependent on biomechanical characteristics, though other factors are also taken into consideration and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Enhancing postural stability in musculoskeletal quadrupedal locomotion through tension feedback for CPG-based controller. One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart. Role of viscoelasticity in the adhesion of mushroom-shaped pillars. A biomimetic fruit fly robot for studying the neuromechanics of legged locomotion. Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1