冠状动脉和颈动脉同时和分阶段血管再通的早期和长期结果

IF 2.7 Q2 PATHOLOGY Pathophysiology Pub Date : 2024-04-13 DOI:10.3390/pathophysiology31020017
Elena Golukhova, I. Sigaev, M. Keren, I. Slivneva, B. Berdibekov, Nina A. Sheikina, O. Kozlova, Valery Arakelyan, I. Volkovskaya, T. Zavalikhina, Susanna Avakova
{"title":"冠状动脉和颈动脉同时和分阶段血管再通的早期和长期结果","authors":"Elena Golukhova, I. Sigaev, M. Keren, I. Slivneva, B. Berdibekov, Nina A. Sheikina, O. Kozlova, Valery Arakelyan, I. Volkovskaya, T. Zavalikhina, Susanna Avakova","doi":"10.3390/pathophysiology31020017","DOIUrl":null,"url":null,"abstract":"Background: Carotid artery disease is prevalent among patients with coronary heart disease. The concomitant severe lesions in the carotid and coronary arteries may necessitate either simultaneous or staged revascularization involving coronary bypass and carotid endarterectomy. However, there is presently a lack of consensus on the optimal choice of surgical treatment tactics for patients with significant stenoses in both carotid and coronary arteries. The aim of the current study was to compare the 30-day and long-term outcomes of coronary and carotid artery revascularization surgery based on the simultaneous or staged surgical tactics. Material and Methods: This single-center retrospective study involved 192 patients with concurrent coronary artery disease and carotid artery stenosis ≥ 70%, of whom 106 patients underwent simultaneous intervention (CABG + CEA) and 86 patients underwent staged CABG/CEA. The mean time between stages ranged from 1 to 4 months (mean 1.88 ± 0.9 months). The endpoints included death from any cause, non-fatal stroke, non-fatal myocardial infarction (MI), and major adverse cardiovascular events (MACEs) (death + non-fatal MI + non-fatal stroke) within 30 days after the last intervention and in the long-term follow-up period (median follow-up—6 years). Results: The 30-day all-cause mortality, incidence of postoperative non-fatal MI, non-fatal stroke, and MACEs did not exhibit differences between the groups after single-stage and staged interventions. However, the overall risk of postoperative complications (adjusted for the risk of any complication per patient) (OR 2.214, 95% CI 1.048–4.674, p = 0.035), as well as the duration of ventilatory support (p = 0.004), was elevated in the group after simultaneous interventions compared with the staged intervention group. This difference did not result in an increased incidence of death and MACEs in the group after simultaneous interventions. In the long-term follow-up period, there were no significant differences observed when comparing simultaneous or staged surgical tactics in terms of overall survival (54.9% and 62.6% in Groups 1 and 2, respectively, P log-rank = 0.068), non-fatal stroke-free survival (45.6% and 33.6% in Groups 1 and 2, respectively, P log-rank = 0.364), non-fatal MI-survival (57.6% and 73.5% in Groups 1 and 2, respectively, P log-rank = 0.169), and MACE-free survival (7.1% and 30.2% in Groups 1 and 2, respectively, P log-rank = 0.060). The risk factors associated with an unfavorable outcome included age, smoking, BMI, LV EF, and atherosclerosis of the lower extremity arteries. Conclusions: This study revealed no significant difference in the impact of simultaneous CABG + CEA or staged CABG/CEA on the incidence of death, stroke, MI, and MACEs over a 30-day and long-term follow-up period. Although the immediate results indicated an increased risk of a complicated course (attributable to overall complications) and more prolonged ventilation after simultaneous CABG + CEA compared with staged CABG/CEA, this did not lead to an increase in fatal complications. Therefore, the implementation of either tactic is considered eligible and appropriate following a thorough operative risk assessment.","PeriodicalId":19852,"journal":{"name":"Pathophysiology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early and Long-Term Results of Simultaneous and Staged Revascularization of Coronary and Carotid Arteries\",\"authors\":\"Elena Golukhova, I. Sigaev, M. Keren, I. Slivneva, B. Berdibekov, Nina A. Sheikina, O. Kozlova, Valery Arakelyan, I. Volkovskaya, T. Zavalikhina, Susanna Avakova\",\"doi\":\"10.3390/pathophysiology31020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Carotid artery disease is prevalent among patients with coronary heart disease. The concomitant severe lesions in the carotid and coronary arteries may necessitate either simultaneous or staged revascularization involving coronary bypass and carotid endarterectomy. However, there is presently a lack of consensus on the optimal choice of surgical treatment tactics for patients with significant stenoses in both carotid and coronary arteries. The aim of the current study was to compare the 30-day and long-term outcomes of coronary and carotid artery revascularization surgery based on the simultaneous or staged surgical tactics. Material and Methods: This single-center retrospective study involved 192 patients with concurrent coronary artery disease and carotid artery stenosis ≥ 70%, of whom 106 patients underwent simultaneous intervention (CABG + CEA) and 86 patients underwent staged CABG/CEA. The mean time between stages ranged from 1 to 4 months (mean 1.88 ± 0.9 months). The endpoints included death from any cause, non-fatal stroke, non-fatal myocardial infarction (MI), and major adverse cardiovascular events (MACEs) (death + non-fatal MI + non-fatal stroke) within 30 days after the last intervention and in the long-term follow-up period (median follow-up—6 years). Results: The 30-day all-cause mortality, incidence of postoperative non-fatal MI, non-fatal stroke, and MACEs did not exhibit differences between the groups after single-stage and staged interventions. However, the overall risk of postoperative complications (adjusted for the risk of any complication per patient) (OR 2.214, 95% CI 1.048–4.674, p = 0.035), as well as the duration of ventilatory support (p = 0.004), was elevated in the group after simultaneous interventions compared with the staged intervention group. This difference did not result in an increased incidence of death and MACEs in the group after simultaneous interventions. In the long-term follow-up period, there were no significant differences observed when comparing simultaneous or staged surgical tactics in terms of overall survival (54.9% and 62.6% in Groups 1 and 2, respectively, P log-rank = 0.068), non-fatal stroke-free survival (45.6% and 33.6% in Groups 1 and 2, respectively, P log-rank = 0.364), non-fatal MI-survival (57.6% and 73.5% in Groups 1 and 2, respectively, P log-rank = 0.169), and MACE-free survival (7.1% and 30.2% in Groups 1 and 2, respectively, P log-rank = 0.060). The risk factors associated with an unfavorable outcome included age, smoking, BMI, LV EF, and atherosclerosis of the lower extremity arteries. Conclusions: This study revealed no significant difference in the impact of simultaneous CABG + CEA or staged CABG/CEA on the incidence of death, stroke, MI, and MACEs over a 30-day and long-term follow-up period. Although the immediate results indicated an increased risk of a complicated course (attributable to overall complications) and more prolonged ventilation after simultaneous CABG + CEA compared with staged CABG/CEA, this did not lead to an increase in fatal complications. Therefore, the implementation of either tactic is considered eligible and appropriate following a thorough operative risk assessment.\",\"PeriodicalId\":19852,\"journal\":{\"name\":\"Pathophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/pathophysiology31020017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pathophysiology31020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:颈动脉疾病在冠心病患者中很常见。如果颈动脉和冠状动脉同时出现严重病变,就有必要同时或分阶段进行血管重建手术,包括冠状动脉搭桥术和颈动脉内膜切除术。然而,对于同时患有颈动脉和冠状动脉严重狭窄的患者,目前还没有就手术治疗策略的最佳选择达成共识。本研究旨在比较冠状动脉和颈动脉血运重建手术同时进行或分阶段进行的 30 天和长期疗效。材料和方法:这项单中心回顾性研究涉及 192 例并发冠状动脉疾病和颈动脉狭窄≥ 70% 的患者,其中 106 例患者接受了同步介入治疗(CABG + CEA),86 例患者接受了分期 CABG/CEA。两阶段之间的平均间隔时间为 1 至 4 个月(平均为 1.88 ± 0.9 个月)。终点包括最后一次干预后30天内和长期随访期间(中位随访时间为6年)任何原因导致的死亡、非致死性中风、非致死性心肌梗死(MI)和主要不良心血管事件(MACE)(死亡+非致死性心肌梗死+非致死性中风)。结果:单阶段和分阶段干预后,各组间的 30 天全因死亡率、术后非致命性心肌梗死、非致命性中风和 MACEs 的发生率没有差异。然而,与分阶段干预组相比,同时干预组的术后并发症总体风险(根据每位患者发生任何并发症的风险进行调整)(OR 2.214,95% CI 1.048-4.674,p = 0.035)以及呼吸支持持续时间(p = 0.004)均有所上升。这一差异并未导致同时干预组的死亡和MACE发生率增加。在长期随访期间,在总生存率(第 1 组和第 2 组分别为 54.9% 和 62.6%,P log-rank = 0.068)、无致死中风生存率(第 1 组和第 2 组分别为 45.6%和33.6%,P log-rank = 0.364)、非致命性心肌梗死生存率(第1组和第2组分别为57.6%和73.5%,P log-rank = 0.169)和无MACE生存率(第1组和第2组分别为7.1%和30.2%,P log-rank = 0.060)。与不良预后相关的风险因素包括年龄、吸烟、体重指数、左心室EF和下肢动脉粥样硬化。结论:该研究显示,在30天和长期随访期间,同时进行CABG + CEA或分期进行CABG/CEA对死亡、中风、心肌梗死和MACE发生率的影响没有明显差异。虽然近期结果显示,与分期 CABG/CEA 相比,同时 CABG + CEA 的病程复杂(可归因于整体并发症)和通气时间延长的风险增加,但这并没有导致致命并发症的增加。因此,在进行全面的手术风险评估后,无论采用哪种策略都是合格和适当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early and Long-Term Results of Simultaneous and Staged Revascularization of Coronary and Carotid Arteries
Background: Carotid artery disease is prevalent among patients with coronary heart disease. The concomitant severe lesions in the carotid and coronary arteries may necessitate either simultaneous or staged revascularization involving coronary bypass and carotid endarterectomy. However, there is presently a lack of consensus on the optimal choice of surgical treatment tactics for patients with significant stenoses in both carotid and coronary arteries. The aim of the current study was to compare the 30-day and long-term outcomes of coronary and carotid artery revascularization surgery based on the simultaneous or staged surgical tactics. Material and Methods: This single-center retrospective study involved 192 patients with concurrent coronary artery disease and carotid artery stenosis ≥ 70%, of whom 106 patients underwent simultaneous intervention (CABG + CEA) and 86 patients underwent staged CABG/CEA. The mean time between stages ranged from 1 to 4 months (mean 1.88 ± 0.9 months). The endpoints included death from any cause, non-fatal stroke, non-fatal myocardial infarction (MI), and major adverse cardiovascular events (MACEs) (death + non-fatal MI + non-fatal stroke) within 30 days after the last intervention and in the long-term follow-up period (median follow-up—6 years). Results: The 30-day all-cause mortality, incidence of postoperative non-fatal MI, non-fatal stroke, and MACEs did not exhibit differences between the groups after single-stage and staged interventions. However, the overall risk of postoperative complications (adjusted for the risk of any complication per patient) (OR 2.214, 95% CI 1.048–4.674, p = 0.035), as well as the duration of ventilatory support (p = 0.004), was elevated in the group after simultaneous interventions compared with the staged intervention group. This difference did not result in an increased incidence of death and MACEs in the group after simultaneous interventions. In the long-term follow-up period, there were no significant differences observed when comparing simultaneous or staged surgical tactics in terms of overall survival (54.9% and 62.6% in Groups 1 and 2, respectively, P log-rank = 0.068), non-fatal stroke-free survival (45.6% and 33.6% in Groups 1 and 2, respectively, P log-rank = 0.364), non-fatal MI-survival (57.6% and 73.5% in Groups 1 and 2, respectively, P log-rank = 0.169), and MACE-free survival (7.1% and 30.2% in Groups 1 and 2, respectively, P log-rank = 0.060). The risk factors associated with an unfavorable outcome included age, smoking, BMI, LV EF, and atherosclerosis of the lower extremity arteries. Conclusions: This study revealed no significant difference in the impact of simultaneous CABG + CEA or staged CABG/CEA on the incidence of death, stroke, MI, and MACEs over a 30-day and long-term follow-up period. Although the immediate results indicated an increased risk of a complicated course (attributable to overall complications) and more prolonged ventilation after simultaneous CABG + CEA compared with staged CABG/CEA, this did not lead to an increase in fatal complications. Therefore, the implementation of either tactic is considered eligible and appropriate following a thorough operative risk assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathophysiology
Pathophysiology Medicine-Pathology and Forensic Medicine
CiteScore
3.10
自引率
0.00%
发文量
48
期刊介绍: Pathophysiology is an international journal which publishes papers in English which address the etiology, development, and elimination of pathological processes. Contributions on the basic mechanisms underlying these processes, model systems and interdisciplinary approaches are strongly encouraged.
期刊最新文献
ITIH4 in Rheumatoid Arthritis Pathogenesis: Network Pharmacology and Molecular Docking Analysis Identify CXCR4 as a Potential Receptor. Pregnancy-Associated Plasma Protein-A and Free β-Human Chorionic Gonadotrophin in Relation with Oxidative Stress in Obese Pregnant Women: A Clinical Cross-Sectional Study. Impaired Peripheral Vascular Function Following Ischemic Stroke in Mice: Potential Insights into Blood Pressure Variations in the Post-Stroke Patient. Advances in Cathepsin S Inhibition: Challenges and Breakthroughs in Drug Development. Evaluation of Full Thickness Wounds Following Application of a Visco-Liquid Hemostat in a Swine Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1