在实际案例中对回归模型参数进行迭代递归估计,以抵御异常值的影响

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2024-04-12 DOI:10.1049/cth2.12628
Janusz Kozłowski, Zdzisław Kowalczuk
{"title":"在实际案例中对回归模型参数进行迭代递归估计,以抵御异常值的影响","authors":"Janusz Kozłowski,&nbsp;Zdzisław Kowalczuk","doi":"10.1049/cth2.12628","DOIUrl":null,"url":null,"abstract":"<p>Here, identification of processes and systems in the sense of the least sum of absolute values is taken into consideration. The respective absolute value estimators are recognised as exceptionally insensitive to large measurement faults or other defects in the processed data, whereas the classical least squares procedure appears to be completely impractical for processing the data contaminated with such parasitic distortions. Since the absolute value quality index cannot be minimised analytically, an iterative solution is used to find optimal estimates of the parameters of the underlying regression model. In addition, an approximate recursive estimator is proposed and implemented for on-line evaluation of system parameters. The convergence (basic property) of the iterative estimator is show to be proven and some aspects related to the absolute value criterion are explained. This allows for the formulation of practical conclusions and indication of directions for further research. In addition, the effectiveness of the described iterative-recursive estimation procedures is practically verified by appropriate numerical experiments.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 9","pages":"1099-1113"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12628","citationCount":"0","resultStr":"{\"title\":\"Iterative-recursive estimation of parameters of regression models with resistance to outliers on practical examples\",\"authors\":\"Janusz Kozłowski,&nbsp;Zdzisław Kowalczuk\",\"doi\":\"10.1049/cth2.12628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, identification of processes and systems in the sense of the least sum of absolute values is taken into consideration. The respective absolute value estimators are recognised as exceptionally insensitive to large measurement faults or other defects in the processed data, whereas the classical least squares procedure appears to be completely impractical for processing the data contaminated with such parasitic distortions. Since the absolute value quality index cannot be minimised analytically, an iterative solution is used to find optimal estimates of the parameters of the underlying regression model. In addition, an approximate recursive estimator is proposed and implemented for on-line evaluation of system parameters. The convergence (basic property) of the iterative estimator is show to be proven and some aspects related to the absolute value criterion are explained. This allows for the formulation of practical conclusions and indication of directions for further research. In addition, the effectiveness of the described iterative-recursive estimation procedures is practically verified by appropriate numerical experiments.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 9\",\"pages\":\"1099-1113\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12628\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12628\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12628","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们考虑的是在绝对值最小和的意义上识别过程和系统。人们认为,相应的绝对值估算器对大的测量故障或处理数据中的其他缺陷特别不敏感,而经典的最小二乘法程序似乎对处理受此类寄生失真污染的数据完全不切实际。由于绝对值质量指标无法通过分析最小化,因此采用了迭代法来寻找基本回归模型参数的最佳估计值。此外,还提出并实施了一种近似递归估计器,用于在线评估系统参数。证明了迭代估计器的收敛性(基本属性),并解释了与绝对值标准相关的一些方面。这样就可以得出实用的结论,并指明进一步研究的方向。此外,还通过适当的数值实验实际验证了所述迭代递推估计程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative-recursive estimation of parameters of regression models with resistance to outliers on practical examples

Here, identification of processes and systems in the sense of the least sum of absolute values is taken into consideration. The respective absolute value estimators are recognised as exceptionally insensitive to large measurement faults or other defects in the processed data, whereas the classical least squares procedure appears to be completely impractical for processing the data contaminated with such parasitic distortions. Since the absolute value quality index cannot be minimised analytically, an iterative solution is used to find optimal estimates of the parameters of the underlying regression model. In addition, an approximate recursive estimator is proposed and implemented for on-line evaluation of system parameters. The convergence (basic property) of the iterative estimator is show to be proven and some aspects related to the absolute value criterion are explained. This allows for the formulation of practical conclusions and indication of directions for further research. In addition, the effectiveness of the described iterative-recursive estimation procedures is practically verified by appropriate numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Neuro-adaptive prescribed performance control for spacecraft rendezvous based on the fully-actuated system approach Adaptive polynomial Kalman filter for nonlinear state estimation in modified AR time series with fixed coefficients Observer-based adaptive control of vehicle platoon with uncertainty and input constraints An improved two-degree-of-freedom ADRC for asynchronous motor vector system Receding horizon control for persistent monitoring tasks with monitoring count requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1