Hiroki Hase, Y. Mine, S. Okazaki, Yuki Yoshimi, S. Ito, Tzu-Yu Peng, Mizuho Sano, Yuma Koizumi, Naoya Kakimoto, Kotaro Tanimoto, Takeshi Murayama
{"title":"利用深度学习方法从颌面部 X 光片估测性别。","authors":"Hiroki Hase, Y. Mine, S. Okazaki, Yuki Yoshimi, S. Ito, Tzu-Yu Peng, Mizuho Sano, Yuma Koizumi, Naoya Kakimoto, Kotaro Tanimoto, Takeshi Murayama","doi":"10.4012/dmj.2023-253","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to construct deep learning models for more efficient and reliable sex estimation. Two deep learning models, VGG16 and DenseNet-121, were used in this retrospective study. In total, 600 lateral cephalograms were analyzed. A saliency map was generated by gradient-weighted class activation mapping for each output. The two deep learning models achieved high values in each performance metric according to accuracy, sensitivity (recall), precision, F1 score, and areas under the receiver operating characteristic curve. Both models showed substantial differences in the positions indicated in saliency maps for male and female images. The positions in saliency maps also differed between VGG16 and DenseNet-121, regardless of sex. This analysis of our proposed system suggested that sex estimation from lateral cephalograms can be achieved with high accuracy using deep learning.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex estimation from maxillofacial radiographs using a deep learning approach.\",\"authors\":\"Hiroki Hase, Y. Mine, S. Okazaki, Yuki Yoshimi, S. Ito, Tzu-Yu Peng, Mizuho Sano, Yuma Koizumi, Naoya Kakimoto, Kotaro Tanimoto, Takeshi Murayama\",\"doi\":\"10.4012/dmj.2023-253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to construct deep learning models for more efficient and reliable sex estimation. Two deep learning models, VGG16 and DenseNet-121, were used in this retrospective study. In total, 600 lateral cephalograms were analyzed. A saliency map was generated by gradient-weighted class activation mapping for each output. The two deep learning models achieved high values in each performance metric according to accuracy, sensitivity (recall), precision, F1 score, and areas under the receiver operating characteristic curve. Both models showed substantial differences in the positions indicated in saliency maps for male and female images. The positions in saliency maps also differed between VGG16 and DenseNet-121, regardless of sex. This analysis of our proposed system suggested that sex estimation from lateral cephalograms can be achieved with high accuracy using deep learning.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4012/dmj.2023-253\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2023-253","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sex estimation from maxillofacial radiographs using a deep learning approach.
The purpose of this study was to construct deep learning models for more efficient and reliable sex estimation. Two deep learning models, VGG16 and DenseNet-121, were used in this retrospective study. In total, 600 lateral cephalograms were analyzed. A saliency map was generated by gradient-weighted class activation mapping for each output. The two deep learning models achieved high values in each performance metric according to accuracy, sensitivity (recall), precision, F1 score, and areas under the receiver operating characteristic curve. Both models showed substantial differences in the positions indicated in saliency maps for male and female images. The positions in saliency maps also differed between VGG16 and DenseNet-121, regardless of sex. This analysis of our proposed system suggested that sex estimation from lateral cephalograms can be achieved with high accuracy using deep learning.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.