Zeyuan Liu, Xingcheng Wu, Jun Cai, Yan Yang, Chengzi Liu
{"title":"基于数学模型的四自由度磁轴承开关磁阻电机共励磁控制","authors":"Zeyuan Liu, Xingcheng Wu, Jun Cai, Yan Yang, Chengzi Liu","doi":"10.1049/elp2.12433","DOIUrl":null,"url":null,"abstract":"In traditional magnetic bearing motors, the magnetic bearing and the motor are usually driven and controlled separately, resulting in higher controller costs and limiting further expansion of their applications. The author presents a four‐degree‐of‐freedom (4DOF) magnetic bearing switched reluctance motor (MBSRM), consisting of two 8‐pole active radial magnetic bearings (RMBs) and two two‐phase 4/2‐pole switched reluctance motors (SRMs), driven simultaneously by a set of asymmetrical power converters together. Firstly, the structure, winding configuration and co‐excitation working principles of the 4DOF‐MBSRM system are described in detail. Then the radial force formula for an 8‐pole RMB and the torque mathematical model for a 4/2‐pole SRM are briefly derived based on equivalent magnetic circuits, respectively. Furthermore, a co‐excitation control strategy for the 4DOF MBSRM is developed wherein an instantaneous radial force is used to control its rotor shaft levitation, an instantaneous torque is employed for rotational control at low and medium speeds, and an average torque is used for high speed operation. Finally, the good performance of the co‐excitation control for the proposed 4DOF‐MBSRM is proved by simulation analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co‐excitation control of a four‐degree‐of‐freedom magnetic bearing switched reluctance motor based on mathematical models\",\"authors\":\"Zeyuan Liu, Xingcheng Wu, Jun Cai, Yan Yang, Chengzi Liu\",\"doi\":\"10.1049/elp2.12433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In traditional magnetic bearing motors, the magnetic bearing and the motor are usually driven and controlled separately, resulting in higher controller costs and limiting further expansion of their applications. The author presents a four‐degree‐of‐freedom (4DOF) magnetic bearing switched reluctance motor (MBSRM), consisting of two 8‐pole active radial magnetic bearings (RMBs) and two two‐phase 4/2‐pole switched reluctance motors (SRMs), driven simultaneously by a set of asymmetrical power converters together. Firstly, the structure, winding configuration and co‐excitation working principles of the 4DOF‐MBSRM system are described in detail. Then the radial force formula for an 8‐pole RMB and the torque mathematical model for a 4/2‐pole SRM are briefly derived based on equivalent magnetic circuits, respectively. Furthermore, a co‐excitation control strategy for the 4DOF MBSRM is developed wherein an instantaneous radial force is used to control its rotor shaft levitation, an instantaneous torque is employed for rotational control at low and medium speeds, and an average torque is used for high speed operation. Finally, the good performance of the co‐excitation control for the proposed 4DOF‐MBSRM is proved by simulation analysis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/elp2.12433\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/elp2.12433","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Co‐excitation control of a four‐degree‐of‐freedom magnetic bearing switched reluctance motor based on mathematical models
In traditional magnetic bearing motors, the magnetic bearing and the motor are usually driven and controlled separately, resulting in higher controller costs and limiting further expansion of their applications. The author presents a four‐degree‐of‐freedom (4DOF) magnetic bearing switched reluctance motor (MBSRM), consisting of two 8‐pole active radial magnetic bearings (RMBs) and two two‐phase 4/2‐pole switched reluctance motors (SRMs), driven simultaneously by a set of asymmetrical power converters together. Firstly, the structure, winding configuration and co‐excitation working principles of the 4DOF‐MBSRM system are described in detail. Then the radial force formula for an 8‐pole RMB and the torque mathematical model for a 4/2‐pole SRM are briefly derived based on equivalent magnetic circuits, respectively. Furthermore, a co‐excitation control strategy for the 4DOF MBSRM is developed wherein an instantaneous radial force is used to control its rotor shaft levitation, an instantaneous torque is employed for rotational control at low and medium speeds, and an average torque is used for high speed operation. Finally, the good performance of the co‐excitation control for the proposed 4DOF‐MBSRM is proved by simulation analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.