使用改进的 OverFeat CNN 实时检测车辆和车道:自动驾驶中的鲁棒性和性能综合研究

Monowar Hossain Saikat, Sonjoy Paul, Kazi Toriqul Islam, Tanjida Tahmina, Md Shahriar Abdullah, Touhid Imam
{"title":"使用改进的 OverFeat CNN 实时检测车辆和车道:自动驾驶中的鲁棒性和性能综合研究","authors":"Monowar Hossain Saikat, Sonjoy Paul, Kazi Toriqul Islam, Tanjida Tahmina, Md Shahriar Abdullah, Touhid Imam","doi":"10.32996/jcsts.2024.6.2.4","DOIUrl":null,"url":null,"abstract":"This examination researches the use of profound learning methods, explicitly utilizing Convolutional Brain Organizations (CNNs), for ongoing recognition of vehicles and path limits in roadway driving situations. The study investigates the performance of a modified Over Feat CNN architecture by making use of a comprehensive dataset that includes annotated frames captured by a variety of sensors, including cameras, LIDAR, radar, and GPS. The framework shows heartiness in identifying vehicles and anticipating path shapes in 3D while accomplishing functional rates of north of 10 Hz on different GPU setups. Vehicle bounding box predictions with high accuracy, resistance to occlusions, and efficient lane boundary identification are key findings. Quiet, the exploration underlines the likely materialness of this framework in the space of independent driving, introducing a promising road for future improvements in this field.","PeriodicalId":509154,"journal":{"name":"Journal of Computer Science and Technology Studies","volume":"23 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Vehicle and Lane Detection using Modified OverFeat CNN: A Comprehensive Study on Robustness and Performance in Autonomous Driving\",\"authors\":\"Monowar Hossain Saikat, Sonjoy Paul, Kazi Toriqul Islam, Tanjida Tahmina, Md Shahriar Abdullah, Touhid Imam\",\"doi\":\"10.32996/jcsts.2024.6.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This examination researches the use of profound learning methods, explicitly utilizing Convolutional Brain Organizations (CNNs), for ongoing recognition of vehicles and path limits in roadway driving situations. The study investigates the performance of a modified Over Feat CNN architecture by making use of a comprehensive dataset that includes annotated frames captured by a variety of sensors, including cameras, LIDAR, radar, and GPS. The framework shows heartiness in identifying vehicles and anticipating path shapes in 3D while accomplishing functional rates of north of 10 Hz on different GPU setups. Vehicle bounding box predictions with high accuracy, resistance to occlusions, and efficient lane boundary identification are key findings. Quiet, the exploration underlines the likely materialness of this framework in the space of independent driving, introducing a promising road for future improvements in this field.\",\"PeriodicalId\":509154,\"journal\":{\"name\":\"Journal of Computer Science and Technology Studies\",\"volume\":\"23 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32996/jcsts.2024.6.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jcsts.2024.6.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用深度学习方法,明确利用卷积脑组织(CNN),对道路驾驶情况下的车辆和路径限制进行持续识别。该研究利用一个综合数据集,其中包括由各种传感器(包括摄像头、激光雷达、雷达和全球定位系统)捕获的注释帧,对修改后的过胖 CNN 架构的性能进行了研究。该框架在识别车辆和预测三维路径形状方面表现出色,同时在不同的 GPU 设置上实现了 10 Hz 以上的功能速率。高精度的车辆边界框预测、抗遮挡性和高效的车道边界识别是主要发现。此外,该研究还强调了这一框架在独立驾驶领域的实用性,为该领域未来的改进指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Vehicle and Lane Detection using Modified OverFeat CNN: A Comprehensive Study on Robustness and Performance in Autonomous Driving
This examination researches the use of profound learning methods, explicitly utilizing Convolutional Brain Organizations (CNNs), for ongoing recognition of vehicles and path limits in roadway driving situations. The study investigates the performance of a modified Over Feat CNN architecture by making use of a comprehensive dataset that includes annotated frames captured by a variety of sensors, including cameras, LIDAR, radar, and GPS. The framework shows heartiness in identifying vehicles and anticipating path shapes in 3D while accomplishing functional rates of north of 10 Hz on different GPU setups. Vehicle bounding box predictions with high accuracy, resistance to occlusions, and efficient lane boundary identification are key findings. Quiet, the exploration underlines the likely materialness of this framework in the space of independent driving, introducing a promising road for future improvements in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research and Innovation of a Community Intelligent Pension Service System: Taking Longhua District, Shenzhen, China, as an Example AI and Machine Learning for Optimal Crop Yield Optimization in the USA Improving Cardiovascular Disease Prediction through Comparative Analysis of Machine Learning Models Fuzzy Logic Empowered NetWatch: Revolutionizing Aquaculture with IoT-based Intelligent Monitoring and Management in Bangladesh AI-Based Customer Churn Prediction Model for Business Markets in the USA: Exploring the Use of AI and Machine Learning Technologies in Preventing Customer Churn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1