{"title":"遗传性听力损失的最新进展:从诊断到靶向治疗","authors":"Y. Yun, Sang-Yeon Lee","doi":"10.7874/jao.2024.00157","DOIUrl":null,"url":null,"abstract":"Sensorineural hearing loss (SNHL) is the most common sensory disorder, with a high Mendelian genetic contribution. Considering the genotypic and phenotypic heterogeneity of SNHL, the advent of next-generation sequencing technologies has revolutionized knowledge on its genomic architecture. Nonetheless, the conventional application of panel and exome sequencing in real-world practice is being challenged by the emerging need to explore the diagnostic capability of whole-genome sequencing, which enables the detection of both noncoding and structural variations. Small molecules and gene therapies represent good examples of how breakthroughs in genetic understanding can be translated into targeted therapies for SNHL. For example, targeted small molecules have been used to ameliorate autoinflammatory hearing loss caused by gain-of-function variants of NLRP3 and inner ear proteinopathy with OSBPL2 variants underlying dysfunctional autophagy. Strikingly, the successful outcomes of the first-in-human trial of OTOF gene therapy highlighted its potential in the treatment of various forms of genetic hearing loss. clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies are currently being developed for site-specific genome editing to treat human genetic disorders. These advancements have led to an era of genotype- and mechanism-based precision medicine in SNHL practice.","PeriodicalId":44886,"journal":{"name":"Journal of Audiology and Otology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updates on Genetic Hearing Loss: From Diagnosis to Targeted Therapies\",\"authors\":\"Y. Yun, Sang-Yeon Lee\",\"doi\":\"10.7874/jao.2024.00157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensorineural hearing loss (SNHL) is the most common sensory disorder, with a high Mendelian genetic contribution. Considering the genotypic and phenotypic heterogeneity of SNHL, the advent of next-generation sequencing technologies has revolutionized knowledge on its genomic architecture. Nonetheless, the conventional application of panel and exome sequencing in real-world practice is being challenged by the emerging need to explore the diagnostic capability of whole-genome sequencing, which enables the detection of both noncoding and structural variations. Small molecules and gene therapies represent good examples of how breakthroughs in genetic understanding can be translated into targeted therapies for SNHL. For example, targeted small molecules have been used to ameliorate autoinflammatory hearing loss caused by gain-of-function variants of NLRP3 and inner ear proteinopathy with OSBPL2 variants underlying dysfunctional autophagy. Strikingly, the successful outcomes of the first-in-human trial of OTOF gene therapy highlighted its potential in the treatment of various forms of genetic hearing loss. clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies are currently being developed for site-specific genome editing to treat human genetic disorders. These advancements have led to an era of genotype- and mechanism-based precision medicine in SNHL practice.\",\"PeriodicalId\":44886,\"journal\":{\"name\":\"Journal of Audiology and Otology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Audiology and Otology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7874/jao.2024.00157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Audiology and Otology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7874/jao.2024.00157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
Updates on Genetic Hearing Loss: From Diagnosis to Targeted Therapies
Sensorineural hearing loss (SNHL) is the most common sensory disorder, with a high Mendelian genetic contribution. Considering the genotypic and phenotypic heterogeneity of SNHL, the advent of next-generation sequencing technologies has revolutionized knowledge on its genomic architecture. Nonetheless, the conventional application of panel and exome sequencing in real-world practice is being challenged by the emerging need to explore the diagnostic capability of whole-genome sequencing, which enables the detection of both noncoding and structural variations. Small molecules and gene therapies represent good examples of how breakthroughs in genetic understanding can be translated into targeted therapies for SNHL. For example, targeted small molecules have been used to ameliorate autoinflammatory hearing loss caused by gain-of-function variants of NLRP3 and inner ear proteinopathy with OSBPL2 variants underlying dysfunctional autophagy. Strikingly, the successful outcomes of the first-in-human trial of OTOF gene therapy highlighted its potential in the treatment of various forms of genetic hearing loss. clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies are currently being developed for site-specific genome editing to treat human genetic disorders. These advancements have led to an era of genotype- and mechanism-based precision medicine in SNHL practice.
期刊介绍:
Journal of Audiology and Otology (JAO) (formerly known as Korean Journal of Audiology) aims to publish the most advanced findings for all aspects of the auditory and vestibular system and diseases of the ear using state-of-the-art techniques and analyses. The journal covers recent trends related to the topics of audiology, otology, and neurotology conducted by professionals, with the goal of providing better possible treatment to people of all ages, from infants to the elderly, who suffer from auditory and/or vestibular disorders and thus, improving their quality of life. This journal encourages the submission of review papers about current professional issues, research papers presenting a scientific base and clinical application, and case papers with unique reports or clinical trials. We also invite letters to the editor and papers related to the manufacture and distribution of medical devices. This journal provides integrated views from otologists, audiologists, and other healthcare practitioners, offering readers high quality scientific and clinical information. This peer-reviewed and open access journal has been the official journal of the Korean Audiological Society since 1997 and of both the Korean Audiological Society and the Korean Otological Society since 2017. It is published in English four times a year in January, April, July, and October.