Abdelouahid Laftouhi, Mary Anne W. Cordero, Mohamed Adil Mahraz, H. Zerkani, Anouar Hmamou, Amine Mounadi Idrissi, Tagnaout Imane, N. Eloutassi, Zakia Rais, Abdslam Taleb, Mustapha Taleb
{"title":"研究一些植物在气候变化条件下的生理行为","authors":"Abdelouahid Laftouhi, Mary Anne W. Cordero, Mohamed Adil Mahraz, H. Zerkani, Anouar Hmamou, Amine Mounadi Idrissi, Tagnaout Imane, N. Eloutassi, Zakia Rais, Abdslam Taleb, Mustapha Taleb","doi":"10.15244/pjoes/177756","DOIUrl":null,"url":null,"abstract":"In the context of addressing climate change, it becomes essential to anticipate how it will affect plant biodiversity and the way plants adapt physiologically and morphologically to challenging environmental circumstances. To gain a comprehensive understanding of how plants adapt to adverse climatic conditions, we conducted a year-long study with three distinct water stress levels: 25% (sample 1), 50% (sample 2), and 75% (sample 3). The findings revealed a general decrease in primary metabolites (including proteins, carbohydrates, dietary fiber, lipids, and essential minerals like Mg, Fe, K, and Mn) as the water stress level increased. In contrast, secondary metabolites (such as alkaloids, flavonoids, saponins, tannins, and coumarins) exhibited an increase with rising water stress, although a decline became evident as conditions worsened. The same trend was observed in essential oil yield. Furthermore, gas chromatography analysis of essential oils from the plants indicated significant alterations in their chemical composition due to the influence of stressful environmental conditions.","PeriodicalId":510399,"journal":{"name":"Polish Journal of Environmental Studies","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Physiological Behavior of Some Plants\\nin Response to Climate Change Conditions\",\"authors\":\"Abdelouahid Laftouhi, Mary Anne W. Cordero, Mohamed Adil Mahraz, H. Zerkani, Anouar Hmamou, Amine Mounadi Idrissi, Tagnaout Imane, N. Eloutassi, Zakia Rais, Abdslam Taleb, Mustapha Taleb\",\"doi\":\"10.15244/pjoes/177756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of addressing climate change, it becomes essential to anticipate how it will affect plant biodiversity and the way plants adapt physiologically and morphologically to challenging environmental circumstances. To gain a comprehensive understanding of how plants adapt to adverse climatic conditions, we conducted a year-long study with three distinct water stress levels: 25% (sample 1), 50% (sample 2), and 75% (sample 3). The findings revealed a general decrease in primary metabolites (including proteins, carbohydrates, dietary fiber, lipids, and essential minerals like Mg, Fe, K, and Mn) as the water stress level increased. In contrast, secondary metabolites (such as alkaloids, flavonoids, saponins, tannins, and coumarins) exhibited an increase with rising water stress, although a decline became evident as conditions worsened. The same trend was observed in essential oil yield. Furthermore, gas chromatography analysis of essential oils from the plants indicated significant alterations in their chemical composition due to the influence of stressful environmental conditions.\",\"PeriodicalId\":510399,\"journal\":{\"name\":\"Polish Journal of Environmental Studies\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Environmental Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15244/pjoes/177756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Environmental Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15244/pjoes/177756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Physiological Behavior of Some Plants
in Response to Climate Change Conditions
In the context of addressing climate change, it becomes essential to anticipate how it will affect plant biodiversity and the way plants adapt physiologically and morphologically to challenging environmental circumstances. To gain a comprehensive understanding of how plants adapt to adverse climatic conditions, we conducted a year-long study with three distinct water stress levels: 25% (sample 1), 50% (sample 2), and 75% (sample 3). The findings revealed a general decrease in primary metabolites (including proteins, carbohydrates, dietary fiber, lipids, and essential minerals like Mg, Fe, K, and Mn) as the water stress level increased. In contrast, secondary metabolites (such as alkaloids, flavonoids, saponins, tannins, and coumarins) exhibited an increase with rising water stress, although a decline became evident as conditions worsened. The same trend was observed in essential oil yield. Furthermore, gas chromatography analysis of essential oils from the plants indicated significant alterations in their chemical composition due to the influence of stressful environmental conditions.