{"title":"评估冶金焦炭 3D 显微 CT 图像中的成分界面质量","authors":"David Jenkins, Ai Wang","doi":"10.21914/anziamj.v64.17972","DOIUrl":null,"url":null,"abstract":"Metallurgical coke is a crucial component in the production of steel worldwide. It is a porous composite material, created by conversion of metallurgical coal in a coke oven. A key property of metallurgical coke is its strength, and there is evidence that poor interface quality between the two key components of coke can have deleterious effect on coke strength. Here we create small samples of coke and image them using high resolution 3D micro-CT, with pixel size of approximately \\(8\\,\\mu\\)m. We use a Gabor filter, combined with morphology techniques to isolate the different components in the samples. We then develop a measure, called excess porosity to quantify the quality of the interfaces between components. This measure enables us to highlight problem interactions between components.\nReferences\n\nR. Barranco, J. Patrick, C. Snape, and A. Thompson. Impact of low-cost filler material on coke quality. Fuel 86.14 (2007), pp. 2179–2185. doi: 10.1016/j.fuel.2007.03.013\nC. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. Reactive-inert interfaces in metallurgical cokes: Effect of added inerts. Fuel 75.2 (1996), pp. 243–245. doi: 10.1016/0016-2361(95)00233-2\nC. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. The characterization of interfaces between textural components in metallurgical cokes. Fuel 73.12 (1994), pp. 1842–1847. doi: 10.1016/0016-2361(94)90209-7\nC. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. The quality of interfaces in metallurgical cokes containing petroleum coke. Fuel Proces. Tech. 45 (1995), pp. 1–10. doi: 10.1016/0378-3820(95)00003-P\nP. Bennett, F. Shi, and N. Andriopoulos. Determination of a theoretically based coke strength index or indices based on drum tests. ACARP Project C20009 (2013). url: https://www.acarp.com.au/abstracts.aspx?repId=C20009\nM. Haghighat, S. Zonouz, and M. Abdel-Mottaleb. CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Sys. Appl. 42 (2015), pp. 7905–7916. doi: 10.1016/j.eswa.2015.06.025\nT. Kanai, Y. Yamazaki, X. Zhang, A. Uchida, Y. Saito, M. Shoji, H. Aoki, S. Nomura, Y. Kubota, H. Hayashizaki, and S. Miyashita. Quantification of the existence ratio of non-adhesion grain boundaries and factors governing the strength of coke containing low-quality coal. J. Therm. Sci. Tech. 7.2 (2012), pp. 351–363. doi: 10.1299/jtst.7.351\nY. Kubota, S. Nomura, T. Arima, and K. Kato. Effects of coal inertinite size on coke strength. ISIJ Int. 48.5 (2008), pp. 563–571. doi: 10.2355/isijinternational.48.563\nR. Li, D. R. Jenkins, and R. Pearce. Texture-based identification of inert-maceral derived components in metallurgical coke. MODSIM (2015). url: https://www.mssanz.org.au/modsim2015/A1/li_r.pdf\nH. Lomas, D. R. Jenkins, M. R. Mahoney, R. Pearce, R. Roest, K. Steel, and S. Mayo. Examining mechanisms of metallurgical coke fracture using micro-CT imaging and analysis. Fuel Proc. Tech. 155 (2017), pp. 183–190. doi: 10.1016/j.fuproc.2016.05.039\nN. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cyber 9 (1979), pp. 62–66. doi: 10.1109/TSMC.1979.4310076\nR. Roest, H. Lomas, S. Gupta, R. Kanniala, and M. R. Mahoney. Fractographic approach to metallurgical coke failure analysis. Part 3: Characterisation of fracture mechanisms in a blast furnace coke. Fuel 180 (2016), pp. 803–812. doi: 10.1016/j.fuel.2016.04.019\nY. Saito, T. Kanai, D. Igawa, Y. Miyamoto, S. Matsuo, Y. Matsushita, H. Aoki, S. Nomura, H. Hayashizaki, and S. Miyashita. Image recognition method for defect on coke with low-quality coal. ISIJ Int. 54.11 (2014), pp. 2512–2518. doi: 10.2355/isijinternational.54.2512\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of component interface quality in 3D micro-CT images of metallurgical coke\",\"authors\":\"David Jenkins, Ai Wang\",\"doi\":\"10.21914/anziamj.v64.17972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallurgical coke is a crucial component in the production of steel worldwide. It is a porous composite material, created by conversion of metallurgical coal in a coke oven. A key property of metallurgical coke is its strength, and there is evidence that poor interface quality between the two key components of coke can have deleterious effect on coke strength. Here we create small samples of coke and image them using high resolution 3D micro-CT, with pixel size of approximately \\\\(8\\\\,\\\\mu\\\\)m. We use a Gabor filter, combined with morphology techniques to isolate the different components in the samples. We then develop a measure, called excess porosity to quantify the quality of the interfaces between components. This measure enables us to highlight problem interactions between components.\\nReferences\\n\\nR. Barranco, J. Patrick, C. Snape, and A. Thompson. Impact of low-cost filler material on coke quality. Fuel 86.14 (2007), pp. 2179–2185. doi: 10.1016/j.fuel.2007.03.013\\nC. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. Reactive-inert interfaces in metallurgical cokes: Effect of added inerts. Fuel 75.2 (1996), pp. 243–245. doi: 10.1016/0016-2361(95)00233-2\\nC. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. The characterization of interfaces between textural components in metallurgical cokes. Fuel 73.12 (1994), pp. 1842–1847. doi: 10.1016/0016-2361(94)90209-7\\nC. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. The quality of interfaces in metallurgical cokes containing petroleum coke. Fuel Proces. Tech. 45 (1995), pp. 1–10. doi: 10.1016/0378-3820(95)00003-P\\nP. Bennett, F. Shi, and N. Andriopoulos. Determination of a theoretically based coke strength index or indices based on drum tests. ACARP Project C20009 (2013). url: https://www.acarp.com.au/abstracts.aspx?repId=C20009\\nM. Haghighat, S. Zonouz, and M. Abdel-Mottaleb. CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Sys. Appl. 42 (2015), pp. 7905–7916. doi: 10.1016/j.eswa.2015.06.025\\nT. Kanai, Y. Yamazaki, X. Zhang, A. Uchida, Y. Saito, M. Shoji, H. Aoki, S. Nomura, Y. Kubota, H. Hayashizaki, and S. Miyashita. Quantification of the existence ratio of non-adhesion grain boundaries and factors governing the strength of coke containing low-quality coal. J. Therm. Sci. Tech. 7.2 (2012), pp. 351–363. doi: 10.1299/jtst.7.351\\nY. Kubota, S. Nomura, T. Arima, and K. Kato. Effects of coal inertinite size on coke strength. ISIJ Int. 48.5 (2008), pp. 563–571. doi: 10.2355/isijinternational.48.563\\nR. Li, D. R. Jenkins, and R. Pearce. Texture-based identification of inert-maceral derived components in metallurgical coke. MODSIM (2015). url: https://www.mssanz.org.au/modsim2015/A1/li_r.pdf\\nH. Lomas, D. R. Jenkins, M. R. Mahoney, R. Pearce, R. Roest, K. Steel, and S. Mayo. Examining mechanisms of metallurgical coke fracture using micro-CT imaging and analysis. Fuel Proc. Tech. 155 (2017), pp. 183–190. doi: 10.1016/j.fuproc.2016.05.039\\nN. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cyber 9 (1979), pp. 62–66. doi: 10.1109/TSMC.1979.4310076\\nR. Roest, H. Lomas, S. Gupta, R. Kanniala, and M. R. Mahoney. Fractographic approach to metallurgical coke failure analysis. Part 3: Characterisation of fracture mechanisms in a blast furnace coke. Fuel 180 (2016), pp. 803–812. doi: 10.1016/j.fuel.2016.04.019\\nY. Saito, T. Kanai, D. Igawa, Y. Miyamoto, S. Matsuo, Y. Matsushita, H. Aoki, S. Nomura, H. Hayashizaki, and S. Miyashita. Image recognition method for defect on coke with low-quality coal. ISIJ Int. 54.11 (2014), pp. 2512–2518. doi: 10.2355/isijinternational.54.2512\\n\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21914/anziamj.v64.17972\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21914/anziamj.v64.17972","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
冶金焦是全球钢铁生产的重要组成部分。它是一种多孔复合材料,由冶金煤在焦炉中转化而成。冶金焦炭的一个关键特性是强度,有证据表明,焦炭两种关键成分之间的界面质量差会对焦炭强度产生有害影响。在这里,我们制作了焦炭的小样本,并使用高分辨率三维显微 CT 对其进行成像,像素尺寸约为\(8\,\mu\)m。我们使用 Gabor 滤波器,结合形态学技术来分离样品中的不同成分。然后,我们开发了一种称为 "过剩孔隙率 "的测量方法,用于量化成分间界面的质量。通过这种测量方法,我们可以突出显示成分之间存在问题的相互作用。Barranco、J. Patrick、C. Snape 和 A. Thompson。低成本填充材料对焦炭质量的影响。DOI:10.1016/j.fuel.2007.03.013C.Barriocanal, S. Hanson, J. W. Patrick, and A. Walker.冶金焦炭中的反应-惰性界面:添加惰性剂的影响。doi: 10.1016/0016-2361(95)00233-2C.Barriocanal, S. Hanson, J. W. Patrick, and A. Walker.冶金焦炭中质地成分界面的表征。doi: 10.1016/0016-2361(94)90209-7C.Barriocanal, S. Hanson, J. W. Patrick, and A. Walker.含石油焦的冶金焦炭界面质量。Fuel Proces.技术。45 (1995), pp.Bennett, F. Shi, and N. Andriopoulos.基于转鼓试验的理论焦炭强度指数的确定。ACARP 项目 C20009 (2013)。网址:https://www.acarp.com.au/abstracts.aspx?repId=C20009M.Haghighat, S. Zonouz, and M. Abdel-Mottaleb.CloudID: Trustworthy cloud-based and crossenterprise biometric identification.Expert Sys.42(2015),第 7905-7916 页。DOI:10.1016/j.eswa.2015.06.025T。Kanai、Y. Yamazaki、X. Zhang、A. Uchida、Y. Saito、M. Shoji、H. Aoki、S. Nomura、Y. Kubota、H. Hayashizaki 和 S. Miyashita。非粘附晶界存在率的定量化以及影响含劣质煤的焦炭强度的因素。J. Therm.Sci.7.2 (2012), pp.Kubota、S. Nomura、T. Arima 和 K. Kato。煤惰性粒度对焦炭强度的影响。ISIJ Int. 48.5 (2008), pp.Li、D. R. Jenkins 和 R. Pearce。基于纹理的冶金焦炭惰性矿物衍生成分识别。MODSIM (2015). url: https://www.mssanz.org.au/modsim2015/A1/li_r.pdfH.Lomas、D. R. Jenkins、M. R. Mahoney、R. Pearce、R. Roest、K. Steel 和 S. Mayo。利用微型 CT 成像和分析研究冶金焦炭断裂的机理。Fuel Proc.Tech.155 (2017),pp. 183-190. doi: 10.1016/j.fuproc.2016.05.039N.Otsu.从灰度级直方图中选择阈值的方法。IEEE Trans.Sys.Man.Doi: 10.1109/TSMC.1979.4310076R.Roest、H. Lomas、S. Gupta、R. Kanniala 和 M. R. Mahoney。冶金焦炭失效分析的断裂学方法。第 3 部分:高炉焦炭的断裂机制特征。doi: 10.1016/j.fuel.2016.04.019Y.Saito、T. Kanai、D. Igawa、Y. Miyamoto、S. Matsuo、Y. Matsushita、H. Aoki、S. Nomura、H. Hayashizaki 和 S. Miyashita。劣质煤焦炭缺陷的图像识别方法。ISIJ Int. 54.11 (2014), pp.
Evaluation of component interface quality in 3D micro-CT images of metallurgical coke
Metallurgical coke is a crucial component in the production of steel worldwide. It is a porous composite material, created by conversion of metallurgical coal in a coke oven. A key property of metallurgical coke is its strength, and there is evidence that poor interface quality between the two key components of coke can have deleterious effect on coke strength. Here we create small samples of coke and image them using high resolution 3D micro-CT, with pixel size of approximately \(8\,\mu\)m. We use a Gabor filter, combined with morphology techniques to isolate the different components in the samples. We then develop a measure, called excess porosity to quantify the quality of the interfaces between components. This measure enables us to highlight problem interactions between components.
References
R. Barranco, J. Patrick, C. Snape, and A. Thompson. Impact of low-cost filler material on coke quality. Fuel 86.14 (2007), pp. 2179–2185. doi: 10.1016/j.fuel.2007.03.013
C. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. Reactive-inert interfaces in metallurgical cokes: Effect of added inerts. Fuel 75.2 (1996), pp. 243–245. doi: 10.1016/0016-2361(95)00233-2
C. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. The characterization of interfaces between textural components in metallurgical cokes. Fuel 73.12 (1994), pp. 1842–1847. doi: 10.1016/0016-2361(94)90209-7
C. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker. The quality of interfaces in metallurgical cokes containing petroleum coke. Fuel Proces. Tech. 45 (1995), pp. 1–10. doi: 10.1016/0378-3820(95)00003-P
P. Bennett, F. Shi, and N. Andriopoulos. Determination of a theoretically based coke strength index or indices based on drum tests. ACARP Project C20009 (2013). url: https://www.acarp.com.au/abstracts.aspx?repId=C20009
M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb. CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Sys. Appl. 42 (2015), pp. 7905–7916. doi: 10.1016/j.eswa.2015.06.025
T. Kanai, Y. Yamazaki, X. Zhang, A. Uchida, Y. Saito, M. Shoji, H. Aoki, S. Nomura, Y. Kubota, H. Hayashizaki, and S. Miyashita. Quantification of the existence ratio of non-adhesion grain boundaries and factors governing the strength of coke containing low-quality coal. J. Therm. Sci. Tech. 7.2 (2012), pp. 351–363. doi: 10.1299/jtst.7.351
Y. Kubota, S. Nomura, T. Arima, and K. Kato. Effects of coal inertinite size on coke strength. ISIJ Int. 48.5 (2008), pp. 563–571. doi: 10.2355/isijinternational.48.563
R. Li, D. R. Jenkins, and R. Pearce. Texture-based identification of inert-maceral derived components in metallurgical coke. MODSIM (2015). url: https://www.mssanz.org.au/modsim2015/A1/li_r.pdf
H. Lomas, D. R. Jenkins, M. R. Mahoney, R. Pearce, R. Roest, K. Steel, and S. Mayo. Examining mechanisms of metallurgical coke fracture using micro-CT imaging and analysis. Fuel Proc. Tech. 155 (2017), pp. 183–190. doi: 10.1016/j.fuproc.2016.05.039
N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cyber 9 (1979), pp. 62–66. doi: 10.1109/TSMC.1979.4310076
R. Roest, H. Lomas, S. Gupta, R. Kanniala, and M. R. Mahoney. Fractographic approach to metallurgical coke failure analysis. Part 3: Characterisation of fracture mechanisms in a blast furnace coke. Fuel 180 (2016), pp. 803–812. doi: 10.1016/j.fuel.2016.04.019
Y. Saito, T. Kanai, D. Igawa, Y. Miyamoto, S. Matsuo, Y. Matsushita, H. Aoki, S. Nomura, H. Hayashizaki, and S. Miyashita. Image recognition method for defect on coke with low-quality coal. ISIJ Int. 54.11 (2014), pp. 2512–2518. doi: 10.2355/isijinternational.54.2512
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.