社论:教育机器人与竞赛

Felipe N. Martins, José Lima, Andre Schneider de Oliveira, Paulo Costa, Amy Eguchi
{"title":"社论:教育机器人与竞赛","authors":"Felipe N. Martins, José Lima, Andre Schneider de Oliveira, Paulo Costa, Amy Eguchi","doi":"10.3389/frobt.2024.1394849","DOIUrl":null,"url":null,"abstract":"(AMRs). The paper describes an innovative approach to the indoor localization system for the competition based on the Extended Kalman Filter (EKF) and ArUco markers. The authors tested and compared different innovation methods for the obtained observations in the EKF, validating their approach in a real scenario using a factory floor with the official specifications provided by the competition organization.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"16 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Editorial: Educational robotics and competitions\",\"authors\":\"Felipe N. Martins, José Lima, Andre Schneider de Oliveira, Paulo Costa, Amy Eguchi\",\"doi\":\"10.3389/frobt.2024.1394849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(AMRs). The paper describes an innovative approach to the indoor localization system for the competition based on the Extended Kalman Filter (EKF) and ArUco markers. The authors tested and compared different innovation methods for the obtained observations in the EKF, validating their approach in a real scenario using a factory floor with the official specifications provided by the competition organization.\",\"PeriodicalId\":504612,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1394849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1394849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

(AMR)。论文介绍了基于扩展卡尔曼滤波器(EKF)和 ArUco 标识的比赛室内定位系统创新方法。作者针对 EKF 中获得的观测数据测试并比较了不同的创新方法,并根据竞赛组织机构提供的官方规范,在使用工厂车间的真实场景中验证了他们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Editorial: Educational robotics and competitions
(AMRs). The paper describes an innovative approach to the indoor localization system for the competition based on the Extended Kalman Filter (EKF) and ArUco markers. The authors tested and compared different innovation methods for the obtained observations in the EKF, validating their approach in a real scenario using a factory floor with the official specifications provided by the competition organization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collective predictive coding hypothesis: symbol emergence as decentralized Bayesian inference Adaptive satellite attitude control for varying masses using deep reinforcement learning Towards reconciling usability and usefulness of policy explanations for sequential decision-making systems Semantic learning from keyframe demonstration using object attribute constraints Gaze detection as a social cue to initiate natural human-robot collaboration in an assembly task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1