利用深度学习技术分析电子商务市场数据,预测行业趋势

Wei Qian, Yijie Wang
{"title":"利用深度学习技术分析电子商务市场数据,预测行业趋势","authors":"Wei Qian, Yijie Wang","doi":"10.4018/joeuc.342093","DOIUrl":null,"url":null,"abstract":"Faced with challenges in sales predicting research, this article combines the capabilities of deep learning algorithms in handling complex tasks and unstructured data. Through analyzing consumer behavior, it selects factors influencing sales, including images, prices and discounts, and historical sales, as input variables for the model. Three different types of neural network models-fully connected neural networks, convolutional neural networks, and recurrent neural networks-are employed to process structured data, image data, and sales sequence data, respectively. This forms a deep neural network for feature representation. Subsequently, based on the outputs of these three types of deep neural networks, a fully connected neural network is employed to train the sales prediction model. Ultimately, experimental results demonstrate that the proposed sales prediction method outperforms exponential regression and shallow neural networks in terms of accuracy.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"53 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing E-Commerce Market Data Using Deep Learning Techniques to Predict Industry Trends\",\"authors\":\"Wei Qian, Yijie Wang\",\"doi\":\"10.4018/joeuc.342093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Faced with challenges in sales predicting research, this article combines the capabilities of deep learning algorithms in handling complex tasks and unstructured data. Through analyzing consumer behavior, it selects factors influencing sales, including images, prices and discounts, and historical sales, as input variables for the model. Three different types of neural network models-fully connected neural networks, convolutional neural networks, and recurrent neural networks-are employed to process structured data, image data, and sales sequence data, respectively. This forms a deep neural network for feature representation. Subsequently, based on the outputs of these three types of deep neural networks, a fully connected neural network is employed to train the sales prediction model. Ultimately, experimental results demonstrate that the proposed sales prediction method outperforms exponential regression and shallow neural networks in terms of accuracy.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"53 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.342093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.342093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面对销售预测研究的挑战,本文结合了深度学习算法处理复杂任务和非结构化数据的能力。通过分析消费者行为,选择影响销售额的因素,包括图片、价格和折扣以及历史销售额,作为模型的输入变量。全连接神经网络、卷积神经网络和递归神经网络这三种不同类型的神经网络模型分别用于处理结构化数据、图像数据和销售序列数据。这就形成了一个用于特征表示的深度神经网络。随后,根据这三类深度神经网络的输出,采用全连接神经网络来训练销售预测模型。最终,实验结果表明,所提出的销售预测方法在准确性方面优于指数回归和浅层神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing E-Commerce Market Data Using Deep Learning Techniques to Predict Industry Trends
Faced with challenges in sales predicting research, this article combines the capabilities of deep learning algorithms in handling complex tasks and unstructured data. Through analyzing consumer behavior, it selects factors influencing sales, including images, prices and discounts, and historical sales, as input variables for the model. Three different types of neural network models-fully connected neural networks, convolutional neural networks, and recurrent neural networks-are employed to process structured data, image data, and sales sequence data, respectively. This forms a deep neural network for feature representation. Subsequently, based on the outputs of these three types of deep neural networks, a fully connected neural network is employed to train the sales prediction model. Ultimately, experimental results demonstrate that the proposed sales prediction method outperforms exponential regression and shallow neural networks in terms of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Deep Learning-Based Animation Video Image Data Anomaly Detection and Recognition Algorithm Investigating the Moderating Effects of Context-Aware Recommendations on the Relationship Between Knowledge Search and Decision Quality Cracking the Code Predicting Corporate Financial Risk Using Artificial Bee Colony-Attention-Gated Recurrent Unit Model Time Series Trends Forecasting for Manufacturing Enterprises in the Digital Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1