{"title":"整合视觉转换器和图神经网络,实现数字营销中的视觉分析","authors":"Yingna Chao, Hongfeng Zhu, Yueding Zhou","doi":"10.4018/joeuc.342092","DOIUrl":null,"url":null,"abstract":"In today's digital economy, digital marketing has become a crucial means for businesses to drive growth and enhance brand exposure. However, with increasing competition, predicting and optimizing advertising effectiveness has become a pivotal component in formulating digital marketing strategies. In order to better understand ad creatives and deeply explore the information within them, this study focuses on integrating visual transformer (VIT) and graph neural network (GNN) methods. Additionally, the study leverages generative adversarial networks (GAN) to enhance the quality of visual features, aiming to achieve visual analysis, exploration, and prediction of advertising effectiveness in digital marketing. This approach begins by employing VIT, an emerging visual transformer technology, to transform image information into high-dimensional feature representations.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"76 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Visual Transformer and Graph Neural Network for Visual Analysis in Digital Marketing\",\"authors\":\"Yingna Chao, Hongfeng Zhu, Yueding Zhou\",\"doi\":\"10.4018/joeuc.342092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's digital economy, digital marketing has become a crucial means for businesses to drive growth and enhance brand exposure. However, with increasing competition, predicting and optimizing advertising effectiveness has become a pivotal component in formulating digital marketing strategies. In order to better understand ad creatives and deeply explore the information within them, this study focuses on integrating visual transformer (VIT) and graph neural network (GNN) methods. Additionally, the study leverages generative adversarial networks (GAN) to enhance the quality of visual features, aiming to achieve visual analysis, exploration, and prediction of advertising effectiveness in digital marketing. This approach begins by employing VIT, an emerging visual transformer technology, to transform image information into high-dimensional feature representations.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"76 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.342092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.342092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating Visual Transformer and Graph Neural Network for Visual Analysis in Digital Marketing
In today's digital economy, digital marketing has become a crucial means for businesses to drive growth and enhance brand exposure. However, with increasing competition, predicting and optimizing advertising effectiveness has become a pivotal component in formulating digital marketing strategies. In order to better understand ad creatives and deeply explore the information within them, this study focuses on integrating visual transformer (VIT) and graph neural network (GNN) methods. Additionally, the study leverages generative adversarial networks (GAN) to enhance the quality of visual features, aiming to achieve visual analysis, exploration, and prediction of advertising effectiveness in digital marketing. This approach begins by employing VIT, an emerging visual transformer technology, to transform image information into high-dimensional feature representations.