湿法和干法蚀刻超宽带隙 LiGa5O8 和 LiGaO2

Vijaygopal Thirupakuzi Vangipuram, Kaitian Zhang, Hongping Zhao
{"title":"湿法和干法蚀刻超宽带隙 LiGa5O8 和 LiGaO2","authors":"Vijaygopal Thirupakuzi Vangipuram, Kaitian Zhang, Hongping Zhao","doi":"10.1116/6.0003450","DOIUrl":null,"url":null,"abstract":"Crystalline thin films of LiGa5O8 have recently been realized through epitaxial growth via mist-chemical vapor deposition. The single crystal, spinel cubic LiGa5O8 films show promising fundamental material properties and, therefore, make LiGa5O8 a potential enabling material for power electronics. In this work, chemical resistance and etch susceptibility were investigated for the first time on crystalline LiGa5O8 thin films with various wet chemistries. It was found that LiGa5O8 is very chemically resistive to acid solutions, with no apparent etching effects observed when placed in concentrated acid solutions of HCl, H2SO4, HF, or H3PO4 at room temperature. In contrast, orthorhombic (010) LiGaO2 shows effective etching in HCl solutions at varying dilution concentrations, with etch rates measured between 8.6 [1000:1 (DI water: HCl concentration)] and 6092 nm/min (37 wt. % HCl). The inductively coupled plasma reactive ion etching (ICP-RIE) of LiGa5O8 using BCl3/Ar and CF4/Ar/O2 gas chemistries was investigated. The etching rate and surface morphology of etched surfaces were examined as a function of RIE and ICP power. Using a CF4/Ar/O2 gas chemistry with an RIE power of 75 W and an ICP power of 300 W resulted in smooth etched planar surfaces while maintaining an etch rate of ∼24.6 nm/min. Similar dry etching studies were performed for LiGaO2. It was found that the BCl3/Ar gas chemistry was better suited for LiGaO2 etching, with similar surface morphology quality being obtained after etching as prior etching when a RIE power of 15 W and an ICP power of 400 W is utilized.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"35 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wet and dry etching of ultrawide bandgap LiGa5O8 and LiGaO2\",\"authors\":\"Vijaygopal Thirupakuzi Vangipuram, Kaitian Zhang, Hongping Zhao\",\"doi\":\"10.1116/6.0003450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crystalline thin films of LiGa5O8 have recently been realized through epitaxial growth via mist-chemical vapor deposition. The single crystal, spinel cubic LiGa5O8 films show promising fundamental material properties and, therefore, make LiGa5O8 a potential enabling material for power electronics. In this work, chemical resistance and etch susceptibility were investigated for the first time on crystalline LiGa5O8 thin films with various wet chemistries. It was found that LiGa5O8 is very chemically resistive to acid solutions, with no apparent etching effects observed when placed in concentrated acid solutions of HCl, H2SO4, HF, or H3PO4 at room temperature. In contrast, orthorhombic (010) LiGaO2 shows effective etching in HCl solutions at varying dilution concentrations, with etch rates measured between 8.6 [1000:1 (DI water: HCl concentration)] and 6092 nm/min (37 wt. % HCl). The inductively coupled plasma reactive ion etching (ICP-RIE) of LiGa5O8 using BCl3/Ar and CF4/Ar/O2 gas chemistries was investigated. The etching rate and surface morphology of etched surfaces were examined as a function of RIE and ICP power. Using a CF4/Ar/O2 gas chemistry with an RIE power of 75 W and an ICP power of 300 W resulted in smooth etched planar surfaces while maintaining an etch rate of ∼24.6 nm/min. Similar dry etching studies were performed for LiGaO2. It was found that the BCl3/Ar gas chemistry was better suited for LiGaO2 etching, with similar surface morphology quality being obtained after etching as prior etching when a RIE power of 15 W and an ICP power of 400 W is utilized.\",\"PeriodicalId\":282302,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology B\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,通过雾化化学气相沉积的外延生长,实现了 LiGa5O8 晶体薄膜。单晶、尖晶石立方 LiGa5O8 薄膜显示出良好的基本材料特性,因此使 LiGa5O8 成为一种潜在的电力电子材料。在这项研究中,首次使用各种湿化学方法对晶体 LiGa5O8 薄膜的耐化学性和蚀刻敏感性进行了研究。研究发现,LiGa5O8 对酸性溶液具有很强的耐化学性,在室温下将其置于 HCl、H2SO4、HF 或 H3PO4 的浓酸性溶液中时,未观察到明显的蚀刻效应。与此相反,正交(010)LiGaO2 在不同稀释浓度的盐酸溶液中显示出有效的蚀刻效果,测得的蚀刻速率介于 8.6 [1000:1(去离子水:盐酸浓度)] 和 6092 nm/min (37 重量百分比盐酸)之间。研究了使用 BCl3/Ar 和 CF4/Ar/O2 化学气体对 LiGa5O8 进行电感耦合等离子体反应离子蚀刻(ICP-RIE)的情况。研究了蚀刻速率和蚀刻表面形貌与 RIE 和 ICP 功率的函数关系。使用 CF4/Ar/O2 化学气体,RIE 功率为 75 W,ICP 功率为 300 W,可获得光滑的蚀刻平面,同时蚀刻速率保持在 24.6 nm/min 左右。对 LiGaO2 也进行了类似的干法蚀刻研究。研究发现,BCl3/Ar 气体化学成分更适合用于 LiGaO2 的蚀刻,当使用 15 W 的 RIE 功率和 400 W 的 ICP 功率时,蚀刻后的表面形貌质量与蚀刻前相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wet and dry etching of ultrawide bandgap LiGa5O8 and LiGaO2
Crystalline thin films of LiGa5O8 have recently been realized through epitaxial growth via mist-chemical vapor deposition. The single crystal, spinel cubic LiGa5O8 films show promising fundamental material properties and, therefore, make LiGa5O8 a potential enabling material for power electronics. In this work, chemical resistance and etch susceptibility were investigated for the first time on crystalline LiGa5O8 thin films with various wet chemistries. It was found that LiGa5O8 is very chemically resistive to acid solutions, with no apparent etching effects observed when placed in concentrated acid solutions of HCl, H2SO4, HF, or H3PO4 at room temperature. In contrast, orthorhombic (010) LiGaO2 shows effective etching in HCl solutions at varying dilution concentrations, with etch rates measured between 8.6 [1000:1 (DI water: HCl concentration)] and 6092 nm/min (37 wt. % HCl). The inductively coupled plasma reactive ion etching (ICP-RIE) of LiGa5O8 using BCl3/Ar and CF4/Ar/O2 gas chemistries was investigated. The etching rate and surface morphology of etched surfaces were examined as a function of RIE and ICP power. Using a CF4/Ar/O2 gas chemistry with an RIE power of 75 W and an ICP power of 300 W resulted in smooth etched planar surfaces while maintaining an etch rate of ∼24.6 nm/min. Similar dry etching studies were performed for LiGaO2. It was found that the BCl3/Ar gas chemistry was better suited for LiGaO2 etching, with similar surface morphology quality being obtained after etching as prior etching when a RIE power of 15 W and an ICP power of 400 W is utilized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carbon nanotube collimator as an vacuum ultraviolet window Comparative study on variable axis lens systems based on tapered deflectors Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications Upgrading of the modified Knudsen equation and its verification for calculating the gas flow rate through cylindrical tubes Comparison of GeSn alloy films prepared by ion implantation and remote plasma-enhanced chemical vapor deposition methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1