通过深度学习从模拟多视角图像生成星系团质量密度图

Daniel de Andres, W. Cui, G. Yepes, M. Petris, G. Aversano, A. Ferragamo, Federico De Luca, A. J. Munoz
{"title":"通过深度学习从模拟多视角图像生成星系团质量密度图","authors":"Daniel de Andres, W. Cui, G. Yepes, M. Petris, G. Aversano, A. Ferragamo, Federico De Luca, A. J. Munoz","doi":"10.1051/epjconf/202429300013","DOIUrl":null,"url":null,"abstract":"Galaxy clusters are composed of dark matter, gas and stars. Their dark matter component, which amounts to around 80% of the total mass, cannot be directly observed but traced by the distribution of diffused gas and galaxy members. In this work, we aim to infer the cluster’s projected total mass distribution from mock observational data, i.e. stars, Sunyaev-Zeldovich, and X-ray, by training deep learning models. To this end, we have created a multiview images dataset from The Three Hundred simulation that is optimal for training Machine Learning models. We further study deep learning architectures based on the U-Net to account for single-input and multi-input models. We show that the predicted mass distribution agrees well with the true one.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"86 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating galaxy clusters mass density maps from mock multiview images via deep learning\",\"authors\":\"Daniel de Andres, W. Cui, G. Yepes, M. Petris, G. Aversano, A. Ferragamo, Federico De Luca, A. J. Munoz\",\"doi\":\"10.1051/epjconf/202429300013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Galaxy clusters are composed of dark matter, gas and stars. Their dark matter component, which amounts to around 80% of the total mass, cannot be directly observed but traced by the distribution of diffused gas and galaxy members. In this work, we aim to infer the cluster’s projected total mass distribution from mock observational data, i.e. stars, Sunyaev-Zeldovich, and X-ray, by training deep learning models. To this end, we have created a multiview images dataset from The Three Hundred simulation that is optimal for training Machine Learning models. We further study deep learning architectures based on the U-Net to account for single-input and multi-input models. We show that the predicted mass distribution agrees well with the true one.\",\"PeriodicalId\":11731,\"journal\":{\"name\":\"EPJ Web of Conferences\",\"volume\":\"86 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjconf/202429300013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202429300013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

星系团由暗物质、气体和恒星组成。它们的暗物质部分约占总质量的80%,无法直接观测到,只能通过扩散气体和星系成员的分布来追踪。在这项工作中,我们的目标是通过训练深度学习模型,从模拟观测数据(即恒星、Sunyaev-Zeldovich 和 X 射线)中推断出星团的投影总质量分布。为此,我们从 "三百 "模拟中创建了一个多视图图像数据集,该数据集是训练机器学习模型的最佳选择。我们进一步研究了基于 U-Net 的深度学习架构,以考虑单输入和多输入模型。我们的研究表明,预测的质量分布与真实质量分布非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating galaxy clusters mass density maps from mock multiview images via deep learning
Galaxy clusters are composed of dark matter, gas and stars. Their dark matter component, which amounts to around 80% of the total mass, cannot be directly observed but traced by the distribution of diffused gas and galaxy members. In this work, we aim to infer the cluster’s projected total mass distribution from mock observational data, i.e. stars, Sunyaev-Zeldovich, and X-ray, by training deep learning models. To this end, we have created a multiview images dataset from The Three Hundred simulation that is optimal for training Machine Learning models. We further study deep learning architectures based on the U-Net to account for single-input and multi-input models. We show that the predicted mass distribution agrees well with the true one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heavy flavor and quarkonia results from the PHENIX experiment The ups and downs of inferred cosmological lithium Repurposing of the Run 2 CMS High Level Trigger Infrastructure as a Cloud Resource for Offline Computing HPC resources for CMS offline computing: An integration and scalability challenge for the Submission Infrastructure Adoption of a token-based authentication model for the CMS Submission Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1