TDP2 是雌激素反应性癌基因表达的调节器

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY NAR cancer Pub Date : 2024-04-08 DOI:10.1093/narcan/zcae016
N. Manguso, Minhyung Kim, Neeraj Joshi, Md Rasel Al Mahmud, Juan Aldaco, Ryusuke Suzuki, Felipe Cortés-Ledesma, Xiaojiang Cui, Shintaro Yamada, Shunichi Takeda, Armando Giuliano, Sungyong You, Hisashi Tanaka
{"title":"TDP2 是雌激素反应性癌基因表达的调节器","authors":"N. Manguso, Minhyung Kim, Neeraj Joshi, Md Rasel Al Mahmud, Juan Aldaco, Ryusuke Suzuki, Felipe Cortés-Ledesma, Xiaojiang Cui, Shintaro Yamada, Shunichi Takeda, Armando Giuliano, Sungyong You, Hisashi Tanaka","doi":"10.1093/narcan/zcae016","DOIUrl":null,"url":null,"abstract":"Abstract With its ligand estrogen, the estrogen receptor (ER) initiates a global transcriptional program, promoting cell growth. This process involves topoisomerase 2 (TOP2), a key protein in resolving topological issues during transcription by cleaving a DNA duplex, passing another duplex through the break, and repairing the break. Recent studies revealed the involvement of various DNA repair proteins in the repair of TOP2-induced breaks, suggesting potential alternative repair pathways in cases where TOP2 is halted after cleavage. However, the contribution of these proteins in ER-induced transcriptional regulation remains unclear. We investigated the role of tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme for the removal of halted TOP2 from the DNA ends, in the estrogen-induced transcriptome using both targeted and global transcription analyses. MYC activation by estrogen, a TOP2-dependent and transient event, became prolonged in the absence of TDP2 in both TDP2-deficient cells and mice. Bulk and single-cell RNA-seq analyses defined MYC and CCND1 as oncogenes whose estrogen response is tightly regulated by TDP2. These results suggest that TDP2 may inherently participate in the repair of estrogen-induced breaks at specific genomic loci, exerting precise control over oncogenic gene expression.","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TDP2 is a regulator of estrogen-responsive oncogene expression\",\"authors\":\"N. Manguso, Minhyung Kim, Neeraj Joshi, Md Rasel Al Mahmud, Juan Aldaco, Ryusuke Suzuki, Felipe Cortés-Ledesma, Xiaojiang Cui, Shintaro Yamada, Shunichi Takeda, Armando Giuliano, Sungyong You, Hisashi Tanaka\",\"doi\":\"10.1093/narcan/zcae016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With its ligand estrogen, the estrogen receptor (ER) initiates a global transcriptional program, promoting cell growth. This process involves topoisomerase 2 (TOP2), a key protein in resolving topological issues during transcription by cleaving a DNA duplex, passing another duplex through the break, and repairing the break. Recent studies revealed the involvement of various DNA repair proteins in the repair of TOP2-induced breaks, suggesting potential alternative repair pathways in cases where TOP2 is halted after cleavage. However, the contribution of these proteins in ER-induced transcriptional regulation remains unclear. We investigated the role of tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme for the removal of halted TOP2 from the DNA ends, in the estrogen-induced transcriptome using both targeted and global transcription analyses. MYC activation by estrogen, a TOP2-dependent and transient event, became prolonged in the absence of TDP2 in both TDP2-deficient cells and mice. Bulk and single-cell RNA-seq analyses defined MYC and CCND1 as oncogenes whose estrogen response is tightly regulated by TDP2. These results suggest that TDP2 may inherently participate in the repair of estrogen-induced breaks at specific genomic loci, exerting precise control over oncogenic gene expression.\",\"PeriodicalId\":94149,\"journal\":{\"name\":\"NAR cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR cancer\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1093/narcan/zcae016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1093/narcan/zcae016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 雌激素受体(ER)通过其配体雌激素启动全局转录程序,促进细胞生长。这一过程涉及拓扑异构酶 2(TOP2),它是解决转录过程中拓扑问题的一个关键蛋白,其作用是裂解 DNA 双链,使另一个双链通过断裂处并修复断裂。最近的研究发现,多种 DNA 修复蛋白参与了 TOP2 诱导的断裂修复,这表明在 TOP2 在裂解后停止的情况下,可能存在其他修复途径。然而,这些蛋白在ER诱导的转录调控中的贡献仍不清楚。我们利用靶向和全局转录分析研究了酪氨酰-DNA 磷酸二酯酶 2(TDP2)在雌激素诱导的转录组中的作用。在缺乏 TDP2 的细胞和小鼠中,雌激素对 MYC 的活化(一种依赖于 TOP2 的瞬时事件)在缺乏 TDP2 的情况下会延长。大量和单细胞RNA-seq分析确定了MYC和CCND1是其雌激素反应受TDP2严格调控的癌基因。这些结果表明,TDP2 可能本质上参与了雌激素诱导的特定基因组位点断裂的修复,从而对致癌基因的表达进行精确控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TDP2 is a regulator of estrogen-responsive oncogene expression
Abstract With its ligand estrogen, the estrogen receptor (ER) initiates a global transcriptional program, promoting cell growth. This process involves topoisomerase 2 (TOP2), a key protein in resolving topological issues during transcription by cleaving a DNA duplex, passing another duplex through the break, and repairing the break. Recent studies revealed the involvement of various DNA repair proteins in the repair of TOP2-induced breaks, suggesting potential alternative repair pathways in cases where TOP2 is halted after cleavage. However, the contribution of these proteins in ER-induced transcriptional regulation remains unclear. We investigated the role of tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme for the removal of halted TOP2 from the DNA ends, in the estrogen-induced transcriptome using both targeted and global transcription analyses. MYC activation by estrogen, a TOP2-dependent and transient event, became prolonged in the absence of TDP2 in both TDP2-deficient cells and mice. Bulk and single-cell RNA-seq analyses defined MYC and CCND1 as oncogenes whose estrogen response is tightly regulated by TDP2. These results suggest that TDP2 may inherently participate in the repair of estrogen-induced breaks at specific genomic loci, exerting precise control over oncogenic gene expression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Correction to 'Ku-DNA binding inhibitors modulate the DNA damage response in response to DNA double-strand breaks'. CytoCellDB: a comprehensive resource for exploring extrachromosomal DNA in cancer cell lines. DNA abasic sites act as rational therapeutic targets to synergize temozolomide response in both MMR-proficient and deficient cancer. High-level tumour methylation of BRCA1 and RAD51C is required for homologous recombination deficiency in solid cancers. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1