{"title":"Multi-WiIR:基于 WiFi 设备的多用户身份合法性认证","authors":"Zhongcheng Wei, Yanhu Dong","doi":"10.3390/fi16040127","DOIUrl":null,"url":null,"abstract":"With the proliferation of WiFi devices, WiFi-based identification technology has garnered attention in the security domain and has demonstrated initial success. Nonetheless, when untrained illegitimate users appear, the classifier tends to categorize them as if they were trained users. In response to this issue, researchers have proposed identity legitimacy authentication systems to identify illicit users, albeit only applicable to individual users. In this article, we propose a multi-user legitimacy authentication system based on WiFi, termed Multi-WiIR. Leveraging WiFi signals, the system captures users’ walking patterns to ascertain their legitimacy. The core concept entails training a multi-branch deep neural network, designated WiIR-Net, for feature extraction of individual users. Binary classifiers are then applied to each user, and legitimacy is established by comparing the model’s output to predefined thresholds, thus facilitating multi-user legitimacy authentication. Moreover, the study experimentally investigated the impact of the number of legitimate individuals on accuracy rates. The results demonstrated that The Multi-WiIR system showed commendable performance with low latency, being capable of conducting legitimacy recognition in scenarios involving up to four users, with an accuracy rate reaching 85.11%.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-WiIR: Multi-User Identity Legitimacy Authentication Based on WiFi Device\",\"authors\":\"Zhongcheng Wei, Yanhu Dong\",\"doi\":\"10.3390/fi16040127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of WiFi devices, WiFi-based identification technology has garnered attention in the security domain and has demonstrated initial success. Nonetheless, when untrained illegitimate users appear, the classifier tends to categorize them as if they were trained users. In response to this issue, researchers have proposed identity legitimacy authentication systems to identify illicit users, albeit only applicable to individual users. In this article, we propose a multi-user legitimacy authentication system based on WiFi, termed Multi-WiIR. Leveraging WiFi signals, the system captures users’ walking patterns to ascertain their legitimacy. The core concept entails training a multi-branch deep neural network, designated WiIR-Net, for feature extraction of individual users. Binary classifiers are then applied to each user, and legitimacy is established by comparing the model’s output to predefined thresholds, thus facilitating multi-user legitimacy authentication. Moreover, the study experimentally investigated the impact of the number of legitimate individuals on accuracy rates. The results demonstrated that The Multi-WiIR system showed commendable performance with low latency, being capable of conducting legitimacy recognition in scenarios involving up to four users, with an accuracy rate reaching 85.11%.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16040127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-WiIR: Multi-User Identity Legitimacy Authentication Based on WiFi Device
With the proliferation of WiFi devices, WiFi-based identification technology has garnered attention in the security domain and has demonstrated initial success. Nonetheless, when untrained illegitimate users appear, the classifier tends to categorize them as if they were trained users. In response to this issue, researchers have proposed identity legitimacy authentication systems to identify illicit users, albeit only applicable to individual users. In this article, we propose a multi-user legitimacy authentication system based on WiFi, termed Multi-WiIR. Leveraging WiFi signals, the system captures users’ walking patterns to ascertain their legitimacy. The core concept entails training a multi-branch deep neural network, designated WiIR-Net, for feature extraction of individual users. Binary classifiers are then applied to each user, and legitimacy is established by comparing the model’s output to predefined thresholds, thus facilitating multi-user legitimacy authentication. Moreover, the study experimentally investigated the impact of the number of legitimate individuals on accuracy rates. The results demonstrated that The Multi-WiIR system showed commendable performance with low latency, being capable of conducting legitimacy recognition in scenarios involving up to four users, with an accuracy rate reaching 85.11%.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.