创造遗传多样性:释放蛋白质进化的潜力

SynBio Pub Date : 2024-04-07 DOI:10.3390/synbio2020009
Vamsi Krishna Gali, K. L. Tee, T. S. Wong
{"title":"创造遗传多样性:释放蛋白质进化的潜力","authors":"Vamsi Krishna Gali, K. L. Tee, T. S. Wong","doi":"10.3390/synbio2020009","DOIUrl":null,"url":null,"abstract":"Genetic diversity is the foundation of evolutionary resilience, adaptive potential, and the flourishing vitality of living organisms, serving as the cornerstone for robust ecosystems and the continuous evolution of life on Earth. The landscape of directed evolution, a powerful biotechnological tool inspired by natural evolutionary processes, has undergone a transformative shift propelled by innovative strategies for generating genetic diversity. This shift is fuelled by several factors, encompassing the utilization of advanced toolkits like CRISPR-Cas and base editors, the enhanced comprehension of biological mechanisms, cost-effective custom oligo pool synthesis, and the seamless integration of artificial intelligence and automation. This comprehensive review looks into the myriad of methodologies employed for constructing gene libraries, both in vitro and in vivo, categorized into three major classes: random mutagenesis, focused mutagenesis, and DNA recombination. The objectives of this review are threefold: firstly, to present a panoramic overview of recent advances in genetic diversity creation; secondly, to inspire novel ideas for further innovation in genetic diversity generation; and thirdly, to provide a valuable resource for individuals entering the field of directed evolution.","PeriodicalId":507619,"journal":{"name":"SynBio","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution\",\"authors\":\"Vamsi Krishna Gali, K. L. Tee, T. S. Wong\",\"doi\":\"10.3390/synbio2020009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic diversity is the foundation of evolutionary resilience, adaptive potential, and the flourishing vitality of living organisms, serving as the cornerstone for robust ecosystems and the continuous evolution of life on Earth. The landscape of directed evolution, a powerful biotechnological tool inspired by natural evolutionary processes, has undergone a transformative shift propelled by innovative strategies for generating genetic diversity. This shift is fuelled by several factors, encompassing the utilization of advanced toolkits like CRISPR-Cas and base editors, the enhanced comprehension of biological mechanisms, cost-effective custom oligo pool synthesis, and the seamless integration of artificial intelligence and automation. This comprehensive review looks into the myriad of methodologies employed for constructing gene libraries, both in vitro and in vivo, categorized into three major classes: random mutagenesis, focused mutagenesis, and DNA recombination. The objectives of this review are threefold: firstly, to present a panoramic overview of recent advances in genetic diversity creation; secondly, to inspire novel ideas for further innovation in genetic diversity generation; and thirdly, to provide a valuable resource for individuals entering the field of directed evolution.\",\"PeriodicalId\":507619,\"journal\":{\"name\":\"SynBio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SynBio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/synbio2020009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SynBio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/synbio2020009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遗传多样性是生物进化复原力、适应潜力和旺盛生命力的基础,是地球上强大生态系统和生命持续进化的基石。受自然进化过程的启发,定向进化这一强大的生物技术工具在基因多样性创新战略的推动下,发生了脱胎换骨的变化。推动这一转变的因素包括:CRISPR-Cas 和碱基编辑器等先进工具包的利用、对生物机制理解的提高、具有成本效益的定制寡核苷酸池合成,以及人工智能和自动化的无缝整合。这篇综述探讨了体外和体内构建基因文库的各种方法,主要分为三大类:随机诱变、聚焦诱变和 DNA 重组。这篇综述的目的有三:首先,对基因多样性创建的最新进展进行全景式概述;其次,启发进一步创新基因多样性生成的新思路;第三,为进入定向进化领域的个人提供有价值的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution
Genetic diversity is the foundation of evolutionary resilience, adaptive potential, and the flourishing vitality of living organisms, serving as the cornerstone for robust ecosystems and the continuous evolution of life on Earth. The landscape of directed evolution, a powerful biotechnological tool inspired by natural evolutionary processes, has undergone a transformative shift propelled by innovative strategies for generating genetic diversity. This shift is fuelled by several factors, encompassing the utilization of advanced toolkits like CRISPR-Cas and base editors, the enhanced comprehension of biological mechanisms, cost-effective custom oligo pool synthesis, and the seamless integration of artificial intelligence and automation. This comprehensive review looks into the myriad of methodologies employed for constructing gene libraries, both in vitro and in vivo, categorized into three major classes: random mutagenesis, focused mutagenesis, and DNA recombination. The objectives of this review are threefold: firstly, to present a panoramic overview of recent advances in genetic diversity creation; secondly, to inspire novel ideas for further innovation in genetic diversity generation; and thirdly, to provide a valuable resource for individuals entering the field of directed evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tropical Fruit Virus Resistance in the Era of Next-Generation Plant Breeding Efficient Stereoselective Biotransformation of Prochiral Carbonyls by Endophytic Fungi from Handroanthus impetiginosus Metformin Lowers Plasma Triacylglycerol Levels in Mice with Impaired Carnitine Biosynthesis and Fatty Liver Crafting Genetic Diversity: Unlocking the Potential of Protein Evolution Saccharomyces cerevisiae as a Host for Chondroitin Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1