{"title":"信用卡欺诈检测中的可解释人工智能:可解释的模型和透明的决策,提高美国的信任度和合规性","authors":"Md Rokibul Hasan, Sumon Gazi, N. Gurung","doi":"10.32996/jcsts.2024.6.2.1","DOIUrl":null,"url":null,"abstract":"Credit Card Fraud presents significant challenges across various domains, comprising, healthcare, insurance, finance, and e-commerce. The principal objective of this research was to examine the efficacy of Machine Learning techniques in detecting credit card fraud. Four key Machine Learning techniques were employed, notably, Support Vector Machine, Logistic Regression, Random Forest, and Artificial Neural Network. Subsequently, model performance was evaluated using Precision, Recall, Accuracy, and F-measure metrics. While all models demonstrated high accuracy rates (99%), this was largely due to the dataset's size, with 284,807 attributes and only 492 fraudulent transactions. Nevertheless, accuracy solely did not provide a comprehensive comparison metric. Support Vector Machine showed the highest recall (89.5), correctly identifying the most positive instances, highlighting its efficacy in detecting true positives. On the other hand, the Artificial Neural Network model exhibited the highest precision (79.4, indicating its capability to make accurate identifications, making it proficient in optimistic predictions.","PeriodicalId":509154,"journal":{"name":"Journal of Computer Science and Technology Studies","volume":"12 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable AI in Credit Card Fraud Detection: Interpretable Models and Transparent Decision-making for Enhanced Trust and Compliance in the USA\",\"authors\":\"Md Rokibul Hasan, Sumon Gazi, N. Gurung\",\"doi\":\"10.32996/jcsts.2024.6.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit Card Fraud presents significant challenges across various domains, comprising, healthcare, insurance, finance, and e-commerce. The principal objective of this research was to examine the efficacy of Machine Learning techniques in detecting credit card fraud. Four key Machine Learning techniques were employed, notably, Support Vector Machine, Logistic Regression, Random Forest, and Artificial Neural Network. Subsequently, model performance was evaluated using Precision, Recall, Accuracy, and F-measure metrics. While all models demonstrated high accuracy rates (99%), this was largely due to the dataset's size, with 284,807 attributes and only 492 fraudulent transactions. Nevertheless, accuracy solely did not provide a comprehensive comparison metric. Support Vector Machine showed the highest recall (89.5), correctly identifying the most positive instances, highlighting its efficacy in detecting true positives. On the other hand, the Artificial Neural Network model exhibited the highest precision (79.4, indicating its capability to make accurate identifications, making it proficient in optimistic predictions.\",\"PeriodicalId\":509154,\"journal\":{\"name\":\"Journal of Computer Science and Technology Studies\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32996/jcsts.2024.6.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jcsts.2024.6.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Explainable AI in Credit Card Fraud Detection: Interpretable Models and Transparent Decision-making for Enhanced Trust and Compliance in the USA
Credit Card Fraud presents significant challenges across various domains, comprising, healthcare, insurance, finance, and e-commerce. The principal objective of this research was to examine the efficacy of Machine Learning techniques in detecting credit card fraud. Four key Machine Learning techniques were employed, notably, Support Vector Machine, Logistic Regression, Random Forest, and Artificial Neural Network. Subsequently, model performance was evaluated using Precision, Recall, Accuracy, and F-measure metrics. While all models demonstrated high accuracy rates (99%), this was largely due to the dataset's size, with 284,807 attributes and only 492 fraudulent transactions. Nevertheless, accuracy solely did not provide a comprehensive comparison metric. Support Vector Machine showed the highest recall (89.5), correctly identifying the most positive instances, highlighting its efficacy in detecting true positives. On the other hand, the Artificial Neural Network model exhibited the highest precision (79.4, indicating its capability to make accurate identifications, making it proficient in optimistic predictions.