{"title":"壳聚糖及其衍生物纳米粒子在胃肠道癌症中的应用:分子作用机制与前景看好的抗癌策略","authors":"Zahra Shokati Eshkiki, Fatemeh Mansouri, Amir Reza Karamzadeh, Abolfazl Namazi, Hafez Heydari, Javad Akhtari, Seidamir Pasha Tabaeian, Abolfazl Akbari","doi":"10.1155/2024/1239661","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Gastrointestinal cancers account for a significant health concern as the existing treatment modalities, such as surgery, chemotherapy, and radiation therapy, exhibit considerable drawbacks, including a high probability of recurrence, insufficient drug specificity, and severe adverse effects. Hence, novel therapeutic approaches and enhanced tissue-specific targeting are required. Nanomedicine is a field of medicine that uses nanoscale carriers for targeting and administering drugs or diagnostic agents to particular tissues. In the field of nanomedicine, chitosan nanoparticles are well-established delivery technologies used as polymeric carriers. Chitosan is a natural carbohydrate that is biocompatible, biodegradable, polycationic, and mucoadhesive. Chitosan has shown promise in the administration of chemotherapeutic drugs, gene therapy, and immunotherapy for the treatment of gastrointestinal cancers. The limited water solubility of chitosan is one of its major disadvantages as a drug delivery system. Thus, solubility may be increased by chemically treating chitosan. Chitosan derivatives improve the activity, selectivity, biocompatibility, and therapeutic dose reduction of anticancer drugs when used in hydrogel, emulsion, surfactant formulations, and nanoformulation. Chitosan and its derivatives have shown effectiveness in nanoparticle production and exhibit unique surface properties, enabling them to interact selectively with gastrointestinal tumors through both active and passive targeting mechanisms. This review focuses on the molecular signaling pathways of chitosan nanoparticles and their derivatives as potential anticancer agents. The potential of future chitosan applications in gastrointestinal cancers is additionally highlighted.</p>\n </div>","PeriodicalId":15381,"journal":{"name":"Journal of Clinical Pharmacy and Therapeutics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1239661","citationCount":"0","resultStr":"{\"title\":\"Chitosan and Its Derivative-Based Nanoparticles in Gastrointestinal Cancers: Molecular Mechanisms of Action and Promising Anticancer Strategies\",\"authors\":\"Zahra Shokati Eshkiki, Fatemeh Mansouri, Amir Reza Karamzadeh, Abolfazl Namazi, Hafez Heydari, Javad Akhtari, Seidamir Pasha Tabaeian, Abolfazl Akbari\",\"doi\":\"10.1155/2024/1239661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Gastrointestinal cancers account for a significant health concern as the existing treatment modalities, such as surgery, chemotherapy, and radiation therapy, exhibit considerable drawbacks, including a high probability of recurrence, insufficient drug specificity, and severe adverse effects. Hence, novel therapeutic approaches and enhanced tissue-specific targeting are required. Nanomedicine is a field of medicine that uses nanoscale carriers for targeting and administering drugs or diagnostic agents to particular tissues. In the field of nanomedicine, chitosan nanoparticles are well-established delivery technologies used as polymeric carriers. Chitosan is a natural carbohydrate that is biocompatible, biodegradable, polycationic, and mucoadhesive. Chitosan has shown promise in the administration of chemotherapeutic drugs, gene therapy, and immunotherapy for the treatment of gastrointestinal cancers. The limited water solubility of chitosan is one of its major disadvantages as a drug delivery system. Thus, solubility may be increased by chemically treating chitosan. Chitosan derivatives improve the activity, selectivity, biocompatibility, and therapeutic dose reduction of anticancer drugs when used in hydrogel, emulsion, surfactant formulations, and nanoformulation. Chitosan and its derivatives have shown effectiveness in nanoparticle production and exhibit unique surface properties, enabling them to interact selectively with gastrointestinal tumors through both active and passive targeting mechanisms. This review focuses on the molecular signaling pathways of chitosan nanoparticles and their derivatives as potential anticancer agents. The potential of future chitosan applications in gastrointestinal cancers is additionally highlighted.</p>\\n </div>\",\"PeriodicalId\":15381,\"journal\":{\"name\":\"Journal of Clinical Pharmacy and Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1239661\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Pharmacy and Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/1239661\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pharmacy and Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/1239661","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Chitosan and Its Derivative-Based Nanoparticles in Gastrointestinal Cancers: Molecular Mechanisms of Action and Promising Anticancer Strategies
Gastrointestinal cancers account for a significant health concern as the existing treatment modalities, such as surgery, chemotherapy, and radiation therapy, exhibit considerable drawbacks, including a high probability of recurrence, insufficient drug specificity, and severe adverse effects. Hence, novel therapeutic approaches and enhanced tissue-specific targeting are required. Nanomedicine is a field of medicine that uses nanoscale carriers for targeting and administering drugs or diagnostic agents to particular tissues. In the field of nanomedicine, chitosan nanoparticles are well-established delivery technologies used as polymeric carriers. Chitosan is a natural carbohydrate that is biocompatible, biodegradable, polycationic, and mucoadhesive. Chitosan has shown promise in the administration of chemotherapeutic drugs, gene therapy, and immunotherapy for the treatment of gastrointestinal cancers. The limited water solubility of chitosan is one of its major disadvantages as a drug delivery system. Thus, solubility may be increased by chemically treating chitosan. Chitosan derivatives improve the activity, selectivity, biocompatibility, and therapeutic dose reduction of anticancer drugs when used in hydrogel, emulsion, surfactant formulations, and nanoformulation. Chitosan and its derivatives have shown effectiveness in nanoparticle production and exhibit unique surface properties, enabling them to interact selectively with gastrointestinal tumors through both active and passive targeting mechanisms. This review focuses on the molecular signaling pathways of chitosan nanoparticles and their derivatives as potential anticancer agents. The potential of future chitosan applications in gastrointestinal cancers is additionally highlighted.
期刊介绍:
The Journal of Clinical Pharmacy and Therapeutics provides a forum for clinicians, pharmacists and pharmacologists to explore and report on issues of common interest. Reports and commentaries on current issues in medical and pharmaceutical practice are encouraged. Papers on evidence-based clinical practice and multidisciplinary collaborative work are particularly welcome. Regular sections in the journal include: editorials, commentaries, reviews (including systematic overviews and meta-analyses), original research and reports, and book reviews. Its scope embraces all aspects of clinical drug development and therapeutics, including:
Rational therapeutics
Evidence-based practice
Safety, cost-effectiveness and clinical efficacy of drugs
Drug interactions
Clinical impact of drug formulations
Pharmacogenetics
Personalised, stratified and translational medicine
Clinical pharmacokinetics.