利用有限元模拟分析温度对合金钢锻造模拟的影响

Dame Alemayehu Efa, H. Lemu, E. M. Gutema, Mahesh Gopal
{"title":"利用有限元模拟分析温度对合金钢锻造模拟的影响","authors":"Dame Alemayehu Efa, H. Lemu, E. M. Gutema, Mahesh Gopal","doi":"10.4028/p-a6inh6","DOIUrl":null,"url":null,"abstract":"The goal of this research is to examine the influence of temperature affects the forging of a rectangular billet of AISI 4120 alloy steel using the 3D Deform version 11 software. The simulation was performed with 0.3 coefficient of friction on a metal forming (lubricated) process and the part is intended for application in aerospace and oil and gas industries. Three modules of deform software were defined to execute the simulation: pre-processing, simulation, and post-processing. The pre-processing in forging employed standard data— material selection, billet drawing, top and bottom dies design, meshing and simulation control. After 120 steps, the post-process estimation of deformation temperature, effective strain and stress, total velocity, and total displacement were obtained on the billet of material at temperatures of 800o C, 1000o C, and 1200° C. The results show that when forging temperatures climb, effective strain and stress decrease, total displacement and velocity decrease, and the final temperature increases.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":"6 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Effect of Temperature on Alloy Steel Forging Simulation Using Finite Element Simulation\",\"authors\":\"Dame Alemayehu Efa, H. Lemu, E. M. Gutema, Mahesh Gopal\",\"doi\":\"10.4028/p-a6inh6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is to examine the influence of temperature affects the forging of a rectangular billet of AISI 4120 alloy steel using the 3D Deform version 11 software. The simulation was performed with 0.3 coefficient of friction on a metal forming (lubricated) process and the part is intended for application in aerospace and oil and gas industries. Three modules of deform software were defined to execute the simulation: pre-processing, simulation, and post-processing. The pre-processing in forging employed standard data— material selection, billet drawing, top and bottom dies design, meshing and simulation control. After 120 steps, the post-process estimation of deformation temperature, effective strain and stress, total velocity, and total displacement were obtained on the billet of material at temperatures of 800o C, 1000o C, and 1200° C. The results show that when forging temperatures climb, effective strain and stress decrease, total displacement and velocity decrease, and the final temperature increases.\",\"PeriodicalId\":17714,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":\"6 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-a6inh6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-a6inh6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是使用 3D Deform 11 版软件研究温度对 AISI 4120 合金钢矩形坯料锻造的影响。模拟是在摩擦系数为 0.3 的金属成型(润滑)过程中进行的,该零件旨在应用于航空航天和石油天然气行业。为执行模拟定义了 deform 软件的三个模块:预处理、模拟和后处理。锻造前处理采用了标准数据--材料选择、坯料绘制、顶模和底模设计、网格划分和仿真控制。经过 120 个步骤后,对温度分别为 800 摄氏度、1000 摄氏度和 1200 摄氏度的坯料进行了变形温度、有效应变和应力、总速度和总位移的后处理估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing the Effect of Temperature on Alloy Steel Forging Simulation Using Finite Element Simulation
The goal of this research is to examine the influence of temperature affects the forging of a rectangular billet of AISI 4120 alloy steel using the 3D Deform version 11 software. The simulation was performed with 0.3 coefficient of friction on a metal forming (lubricated) process and the part is intended for application in aerospace and oil and gas industries. Three modules of deform software were defined to execute the simulation: pre-processing, simulation, and post-processing. The pre-processing in forging employed standard data— material selection, billet drawing, top and bottom dies design, meshing and simulation control. After 120 steps, the post-process estimation of deformation temperature, effective strain and stress, total velocity, and total displacement were obtained on the billet of material at temperatures of 800o C, 1000o C, and 1200° C. The results show that when forging temperatures climb, effective strain and stress decrease, total displacement and velocity decrease, and the final temperature increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Nanomaterials as Next-Gen Corrosion Inhibitors: A Comprehensive Review for Ceramic Wastewater Treatment Green Composite Concrete Incorporating with Non-Biodegradable Wastes Incorporation of Silicone Mold Residues Influence on Acoustic Properties of Subfloor Mortars Development of Hygrothermal Reference Year for Hygrothermal Simulation of Hygroscopic Building Construction for Guangzhou Experimental Study on Fracture Properties of Self-Compacting Concrete Containing Red Mud Waste and Different Steel Fiber Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1