人工神经网络辅助预测头颈癌的放射生物学指标

Saad Bin Saeed Ahmed, Shahzaib Naeem, Agha Muhammad Hammad Khan, Bilal Mazhar Qureshi, Amjad Hussain, Bulent Aydogan, Wazir Muhammad
{"title":"人工神经网络辅助预测头颈癌的放射生物学指标","authors":"Saad Bin Saeed Ahmed, Shahzaib Naeem, Agha Muhammad Hammad Khan, Bilal Mazhar Qureshi, Amjad Hussain, Bulent Aydogan, Wazir Muhammad","doi":"10.3389/frai.2024.1329737","DOIUrl":null,"url":null,"abstract":"Background and purpose We proposed an artificial neural network model to predict radiobiological parameters for the head and neck squamous cell carcinoma patients treated with radiation therapy. The model uses the tumor specification, demographics, and radiation dose distribution to predict the tumor control probability and the normal tissue complications probability. These indices are crucial for the assessment and clinical management of cancer patients during treatment planning. Methods Two publicly available datasets of 31 and 215 head and neck squamous cell carcinoma patients treated with conformal radiation therapy were selected. The demographics, tumor specifications, and radiation therapy treatment parameters were extracted from the datasets used as inputs for the training of perceptron. Radiobiological indices are calculated by open-source software using dosevolume histograms from radiation therapy treatment plans. Those indices were used as output in the training of a single-layer neural network. The distribution of data used for training, validation, and testing purposes was 70, 15, and 15%, respectively. Results The best performance of the neural network was noted at epoch number 32 with the mean squared error of 0.0465. The accuracy of the prediction of radiobiological indices by the artificial neural network in training, validation, and test phases were determined to be 0.89, 0.87, and 0.82, respectively. We also found that the percentage volume of parotid inside the planning target volume is the significant parameter for the prediction of normal tissue complications probability. Conclusion We believe that the model has significant potential to predict radiobiological indices and help clinicians in treatment plan evaluation and treatment management of head and neck squamous cell carcinoma patients.","PeriodicalId":508738,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"10 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial neural network-assisted prediction of radiobiological indices in head and neck cancer\",\"authors\":\"Saad Bin Saeed Ahmed, Shahzaib Naeem, Agha Muhammad Hammad Khan, Bilal Mazhar Qureshi, Amjad Hussain, Bulent Aydogan, Wazir Muhammad\",\"doi\":\"10.3389/frai.2024.1329737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and purpose We proposed an artificial neural network model to predict radiobiological parameters for the head and neck squamous cell carcinoma patients treated with radiation therapy. The model uses the tumor specification, demographics, and radiation dose distribution to predict the tumor control probability and the normal tissue complications probability. These indices are crucial for the assessment and clinical management of cancer patients during treatment planning. Methods Two publicly available datasets of 31 and 215 head and neck squamous cell carcinoma patients treated with conformal radiation therapy were selected. The demographics, tumor specifications, and radiation therapy treatment parameters were extracted from the datasets used as inputs for the training of perceptron. Radiobiological indices are calculated by open-source software using dosevolume histograms from radiation therapy treatment plans. Those indices were used as output in the training of a single-layer neural network. The distribution of data used for training, validation, and testing purposes was 70, 15, and 15%, respectively. Results The best performance of the neural network was noted at epoch number 32 with the mean squared error of 0.0465. The accuracy of the prediction of radiobiological indices by the artificial neural network in training, validation, and test phases were determined to be 0.89, 0.87, and 0.82, respectively. We also found that the percentage volume of parotid inside the planning target volume is the significant parameter for the prediction of normal tissue complications probability. Conclusion We believe that the model has significant potential to predict radiobiological indices and help clinicians in treatment plan evaluation and treatment management of head and neck squamous cell carcinoma patients.\",\"PeriodicalId\":508738,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1329737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1329737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景和目的 我们提出了一种人工神经网络模型,用于预测接受放射治疗的头颈部鳞状细胞癌患者的放射生物学参数。该模型利用肿瘤规格、人口统计学和辐射剂量分布来预测肿瘤控制概率和正常组织并发症概率。这些指标对癌症患者治疗计划的评估和临床管理至关重要。方法 选取了两个公开的数据集,分别包含 31 名和 215 名接受适形放射治疗的头颈部鳞状细胞癌患者。从数据集中提取人口统计学、肿瘤规格和放疗治疗参数,作为感知器训练的输入。放射生物学指数由开源软件利用放射治疗计划中的剂量体积直方图计算得出。这些指数被用作单层神经网络训练的输出。用于训练、验证和测试的数据分布分别为 70%、15% 和 15%。结果 神经网络在第 32 个历元时表现最佳,平均平方误差为 0.0465。人工神经网络在训练、验证和测试阶段预测放射生物学指标的准确率分别为 0.89、0.87 和 0.82。我们还发现,计划目标体积内腮腺体积百分比是预测正常组织并发症概率的重要参数。结论 我们认为该模型在预测放射生物学指标方面具有巨大潜力,有助于临床医生对头颈部鳞状细胞癌患者的治疗方案进行评估和治疗管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural network-assisted prediction of radiobiological indices in head and neck cancer
Background and purpose We proposed an artificial neural network model to predict radiobiological parameters for the head and neck squamous cell carcinoma patients treated with radiation therapy. The model uses the tumor specification, demographics, and radiation dose distribution to predict the tumor control probability and the normal tissue complications probability. These indices are crucial for the assessment and clinical management of cancer patients during treatment planning. Methods Two publicly available datasets of 31 and 215 head and neck squamous cell carcinoma patients treated with conformal radiation therapy were selected. The demographics, tumor specifications, and radiation therapy treatment parameters were extracted from the datasets used as inputs for the training of perceptron. Radiobiological indices are calculated by open-source software using dosevolume histograms from radiation therapy treatment plans. Those indices were used as output in the training of a single-layer neural network. The distribution of data used for training, validation, and testing purposes was 70, 15, and 15%, respectively. Results The best performance of the neural network was noted at epoch number 32 with the mean squared error of 0.0465. The accuracy of the prediction of radiobiological indices by the artificial neural network in training, validation, and test phases were determined to be 0.89, 0.87, and 0.82, respectively. We also found that the percentage volume of parotid inside the planning target volume is the significant parameter for the prediction of normal tissue complications probability. Conclusion We believe that the model has significant potential to predict radiobiological indices and help clinicians in treatment plan evaluation and treatment management of head and neck squamous cell carcinoma patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using synthetic dataset for semantic segmentation of the human body in the problem of extracting anthropometric data Enhancing educational Q&A systems using a Chaotic Fuzzy Logic-Augmented large language model AI can empower agriculture for global food security: challenges and prospects in developing nations Examining the impact of green technological specialization and the integration of AI technologies on green innovation performance: evidence from China Expandable-RCNN: toward high-efficiency incremental few-shot object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1