睾丸中促肾上腺素衍生肽:睾丸间质和支持细胞功能中可能作用的证据。

Medical biology Pub Date : 1986-01-01
C Boitani, C L Chen, A N Margioris, I Gerendai, P L Morris, C W Bardin
{"title":"睾丸中促肾上腺素衍生肽:睾丸间质和支持细胞功能中可能作用的证据。","authors":"C Boitani,&nbsp;C L Chen,&nbsp;A N Margioris,&nbsp;I Gerendai,&nbsp;P L Morris,&nbsp;C W Bardin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Pro-opiomelanocortin (POMC)-derived peptides such as beta-endorphin, ACTH, and MSHs were identified in the testis where they were exclusively localized in Leydig cells. Examination of testicular extracts by a variety of physicochemical and immunological techniques indicates that the processing of the POMC in the testis is very similar to that in the brain. By using a cDNA probe, the POMC-like mRNA present in total testis and cultured Leydig cells was 150-200 bases shorter than that in the hypothalamus and pituitary. In addition, POMC mRNA was localized to Leydig cells using in situ hybridization. The expression of the POMC-like gene and the accumulation of POMC-derived peptides in Leydig cell were shown to be under the control of gonadotropin. As the testis contains low concentrations of POMC-derived peptides, we suggested that they may be implicated in local regulatory events within this organ. This postulate was supported by results from in vivo and in vitro experiments suggesting that different portions of the POMC-molecule may have opposite effects on Sertoli cell functions. For example, MSHs increased cAMP accumulation and aromatase activity in these cells, while opioids inhibited Sertoli cell proliferation and androgen binding protein (ABP) secretion. Furthermore, following intratesticular administration of opiate antagonists, testosterone production was reduced, suggesting that Leydig cell function may be also modulated by beta-endorphin and/or other related peptides. Taken together, these studies support the hypothesis of a possible role of POMC-derived peptides in testicular function.</p>","PeriodicalId":18313,"journal":{"name":"Medical biology","volume":"63 5-6","pages":"251-8"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pro-opiomelanocortin-derived peptides in the testis: evidence for a possible role in Leydig and Sertoli cell function.\",\"authors\":\"C Boitani,&nbsp;C L Chen,&nbsp;A N Margioris,&nbsp;I Gerendai,&nbsp;P L Morris,&nbsp;C W Bardin\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pro-opiomelanocortin (POMC)-derived peptides such as beta-endorphin, ACTH, and MSHs were identified in the testis where they were exclusively localized in Leydig cells. Examination of testicular extracts by a variety of physicochemical and immunological techniques indicates that the processing of the POMC in the testis is very similar to that in the brain. By using a cDNA probe, the POMC-like mRNA present in total testis and cultured Leydig cells was 150-200 bases shorter than that in the hypothalamus and pituitary. In addition, POMC mRNA was localized to Leydig cells using in situ hybridization. The expression of the POMC-like gene and the accumulation of POMC-derived peptides in Leydig cell were shown to be under the control of gonadotropin. As the testis contains low concentrations of POMC-derived peptides, we suggested that they may be implicated in local regulatory events within this organ. This postulate was supported by results from in vivo and in vitro experiments suggesting that different portions of the POMC-molecule may have opposite effects on Sertoli cell functions. For example, MSHs increased cAMP accumulation and aromatase activity in these cells, while opioids inhibited Sertoli cell proliferation and androgen binding protein (ABP) secretion. Furthermore, following intratesticular administration of opiate antagonists, testosterone production was reduced, suggesting that Leydig cell function may be also modulated by beta-endorphin and/or other related peptides. Taken together, these studies support the hypothesis of a possible role of POMC-derived peptides in testicular function.</p>\",\"PeriodicalId\":18313,\"journal\":{\"name\":\"Medical biology\",\"volume\":\"63 5-6\",\"pages\":\"251-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

前阿皮黑素(POMC)衍生的肽,如β -内啡肽、ACTH和MSHs,在睾丸中被发现,它们只局限于睾丸间质细胞。通过各种物理化学和免疫学技术对睾丸提取物的检测表明,睾丸中POMC的加工过程与大脑中的加工过程非常相似。用cDNA探针检测,总睾丸和培养的间质细胞中的pomc样mRNA比下丘脑和垂体中的pomc样mRNA短150 ~ 200个碱基。此外,利用原位杂交技术将POMC mRNA定位到间质细胞。间质细胞中pomc样基因的表达和pomc衍生肽的积累受促性腺激素的控制。由于睾丸含有低浓度的pomc衍生肽,我们认为它们可能与该器官的局部调节事件有关。体内和体外实验的结果支持了这一假设,表明pomc分子的不同部分可能对支持细胞功能有相反的影响。例如,MSHs增加了这些细胞的cAMP积累和芳香化酶活性,而阿片类药物抑制了支持细胞的增殖和雄激素结合蛋白(ABP)的分泌。此外,在睾丸内给予阿片类拮抗剂后,睾丸激素的产生减少,这表明间质细胞的功能也可能受到-内啡肽和/或其他相关肽的调节。综上所述,这些研究支持pomc衍生肽在睾丸功能中可能起作用的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pro-opiomelanocortin-derived peptides in the testis: evidence for a possible role in Leydig and Sertoli cell function.

Pro-opiomelanocortin (POMC)-derived peptides such as beta-endorphin, ACTH, and MSHs were identified in the testis where they were exclusively localized in Leydig cells. Examination of testicular extracts by a variety of physicochemical and immunological techniques indicates that the processing of the POMC in the testis is very similar to that in the brain. By using a cDNA probe, the POMC-like mRNA present in total testis and cultured Leydig cells was 150-200 bases shorter than that in the hypothalamus and pituitary. In addition, POMC mRNA was localized to Leydig cells using in situ hybridization. The expression of the POMC-like gene and the accumulation of POMC-derived peptides in Leydig cell were shown to be under the control of gonadotropin. As the testis contains low concentrations of POMC-derived peptides, we suggested that they may be implicated in local regulatory events within this organ. This postulate was supported by results from in vivo and in vitro experiments suggesting that different portions of the POMC-molecule may have opposite effects on Sertoli cell functions. For example, MSHs increased cAMP accumulation and aromatase activity in these cells, while opioids inhibited Sertoli cell proliferation and androgen binding protein (ABP) secretion. Furthermore, following intratesticular administration of opiate antagonists, testosterone production was reduced, suggesting that Leydig cell function may be also modulated by beta-endorphin and/or other related peptides. Taken together, these studies support the hypothesis of a possible role of POMC-derived peptides in testicular function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Growth inhibitory polypeptides in the regulation of cell proliferation. Relationship between tryptophan and serotonin concentrations in postmortem human brain. Peptides and neurotransmission in the central nervous system. GABA and affective disorders. Chemical neurotransmission in the parkinsonian brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1