基于农业废弃物的活性炭在废水系统中去除污染物的综述

Q4 Materials Science Chimica Techno Acta Pub Date : 2024-04-04 DOI:10.15826/chimtech.2024.11.2.02
K. Okiy, Joseph Nwabanne Tagbo, Walter Peter Echeng
{"title":"基于农业废弃物的活性炭在废水系统中去除污染物的综述","authors":"K. Okiy, Joseph Nwabanne Tagbo, Walter Peter Echeng","doi":"10.15826/chimtech.2024.11.2.02","DOIUrl":null,"url":null,"abstract":"Environmental pollution from chemicals utilized in manufacturing, pharmaceuticals, and chemical process industries is of serious concern nowadays due to the contamination that ensues when these chemicals are discharged into water bodies. Activated carbon adsorption provides an efficient and economically viable means for mitigation of toxic chemicals (i.e., heavy metals, dyes, pharmaceutics, and antibiotics). However, the exorbitant cost of commercial activated carbons has resulted in the search for low-cost alternatives for the treatment of contaminated effluents. An exhaustive literature survey in this area is necessary to know the extent of work done in this area and seek out the gaps that future research will provide answers to. In this review, various works on activated carbon utilization, batch adsorption, fixed-bed adsorption (experimental and numerical studies) are summarized. This review elucidates the different kinetic and isotherm models of agrowastes-derived activated carbon materials in context with pollutants (dyes, heavy metals, pharmaceuticals, miscellaneous adsorbates) removal through batch and column methods. In addition, fixed-bed column adsorption/regeneration methods using various activated carbons derived from agrowastes are discussed. Among these methods, heavy metal adsorption from aqueous solutions by the activated carbons is the most efficient. The deployment of mathematical and machine learning approaches (ANN and novel GMDH algorithms) in optimization of batch and continuous adsorption processes are also highlighted. Numerical simulation of fixed-column adsorption systems for more improved industrial-scale column designs is described. Conclusions and future challenges of chemicals removal from polluted wastewater utilizing agrowaste-derived activated carbons are also presented.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on agrowaste based activated carbons for pollutant removal in wastewater systems\",\"authors\":\"K. Okiy, Joseph Nwabanne Tagbo, Walter Peter Echeng\",\"doi\":\"10.15826/chimtech.2024.11.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental pollution from chemicals utilized in manufacturing, pharmaceuticals, and chemical process industries is of serious concern nowadays due to the contamination that ensues when these chemicals are discharged into water bodies. Activated carbon adsorption provides an efficient and economically viable means for mitigation of toxic chemicals (i.e., heavy metals, dyes, pharmaceutics, and antibiotics). However, the exorbitant cost of commercial activated carbons has resulted in the search for low-cost alternatives for the treatment of contaminated effluents. An exhaustive literature survey in this area is necessary to know the extent of work done in this area and seek out the gaps that future research will provide answers to. In this review, various works on activated carbon utilization, batch adsorption, fixed-bed adsorption (experimental and numerical studies) are summarized. This review elucidates the different kinetic and isotherm models of agrowastes-derived activated carbon materials in context with pollutants (dyes, heavy metals, pharmaceuticals, miscellaneous adsorbates) removal through batch and column methods. In addition, fixed-bed column adsorption/regeneration methods using various activated carbons derived from agrowastes are discussed. Among these methods, heavy metal adsorption from aqueous solutions by the activated carbons is the most efficient. The deployment of mathematical and machine learning approaches (ANN and novel GMDH algorithms) in optimization of batch and continuous adsorption processes are also highlighted. Numerical simulation of fixed-column adsorption systems for more improved industrial-scale column designs is described. Conclusions and future challenges of chemicals removal from polluted wastewater utilizing agrowaste-derived activated carbons are also presented.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2024.11.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2024.11.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

如今,制造业、制药业和化学加工业所使用的化学物质对环境造成的污染已引起人们的严重关注,因为这些化学物质排入水体后会造成污染。活性炭吸附技术为减轻有毒化学物质(如重金属、染料、药物和抗生素)的污染提供了一种高效且经济可行的方法。然而,由于商用活性炭的价格昂贵,人们开始寻找低成本的替代品来处理受污染的污水。有必要对这一领域进行详尽的文献调查,以了解这一领域的工作程度,并找出差距,为今后的研究提供答案。本综述总结了有关活性炭利用、间歇吸附、固定床吸附(实验和数值研究)的各种工作。本综述阐明了农业废弃物衍生活性炭材料的不同动力学和等温线模型,并结合批次和柱吸附法去除污染物(染料、重金属、药物、其他吸附物)的情况进行了分析。此外,还讨论了使用各种农产废弃物衍生活性炭的固定床柱吸附/再生方法。在这些方法中,活性碳从水溶液中吸附重金属的效率最高。此外,还重点介绍了数学和机器学习方法(ANN 和新型 GMDH 算法)在优化批量和连续吸附过程中的应用。还介绍了固定柱吸附系统的数值模拟,以改进工业规模的吸附柱设计。此外,还介绍了利用源自农业废弃物的活性碳从污染废水中去除化学品的结论和未来挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on agrowaste based activated carbons for pollutant removal in wastewater systems
Environmental pollution from chemicals utilized in manufacturing, pharmaceuticals, and chemical process industries is of serious concern nowadays due to the contamination that ensues when these chemicals are discharged into water bodies. Activated carbon adsorption provides an efficient and economically viable means for mitigation of toxic chemicals (i.e., heavy metals, dyes, pharmaceutics, and antibiotics). However, the exorbitant cost of commercial activated carbons has resulted in the search for low-cost alternatives for the treatment of contaminated effluents. An exhaustive literature survey in this area is necessary to know the extent of work done in this area and seek out the gaps that future research will provide answers to. In this review, various works on activated carbon utilization, batch adsorption, fixed-bed adsorption (experimental and numerical studies) are summarized. This review elucidates the different kinetic and isotherm models of agrowastes-derived activated carbon materials in context with pollutants (dyes, heavy metals, pharmaceuticals, miscellaneous adsorbates) removal through batch and column methods. In addition, fixed-bed column adsorption/regeneration methods using various activated carbons derived from agrowastes are discussed. Among these methods, heavy metal adsorption from aqueous solutions by the activated carbons is the most efficient. The deployment of mathematical and machine learning approaches (ANN and novel GMDH algorithms) in optimization of batch and continuous adsorption processes are also highlighted. Numerical simulation of fixed-column adsorption systems for more improved industrial-scale column designs is described. Conclusions and future challenges of chemicals removal from polluted wastewater utilizing agrowaste-derived activated carbons are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
期刊最新文献
Investigation of the reaction of dimedone with aromatic aldehydes in the presence of copper oxide nanoparticles Dispersive surface free energy of adsorbents modified by supramolecular structures of heterocyclic compounds Cationic amphiphilic meroterpenoids: synthesis, antibacterial, antifungal and mutagenic activity Photoelectrochemical properties of Pt- and Ir-modified graphitic carbon nitride Features of electronic states in the vicinity of band gap and atomic structure of Ta- and Nb-doped Li7La3Zr2O12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1