{"title":"肽凝胶化促进了糖鲍鱼的嫩度和粘弹性","authors":"Yaxian Mo, Jiaqi Ma, Xinyu Zhang, Guanghua Zhao, Jiachen Zang","doi":"10.1007/s00217-024-04523-x","DOIUrl":null,"url":null,"abstract":"<div><p>Dried abalones are precious products, in which candy abalone is the most treasured one, owing to its unique taste. After rehydration and simmering, the core part tastes extraordinarily tender and viscoelastic, just like a soft candy which may almost melt in mouth. However, the reason for this has yet to be elucidated. The purpose of this study is to research the formation mechanism of the candy-like core in candy abalone. First of all, we characterized the viscoelasticity, microstructure and protein changes of candy abalone during the simmering process. The texture results indicated that the springiness and adhesiveness of candy abalone showed an increase. Scanning and transmission electron microscopy suggested that myofibrillar protein in candy abalone formed a dense three-dimensional network hydrogel structure. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed such a hydrogel structure might be derived from the degradation of the myofibrillar protein during the drying process. Also, we identified degraded peptides mainly stemmed from paramyosin by mass spectrometry. Moreover, molecular dynamics simulation revealed that the hydrogen bonds and hydrophobic interactions are mainly responsible for the self-assembly of peptides during the rehydration and simmering stages. Different from reported protein hydrogels, the rheological and morphological properties of the formed peptide hydrogels in candy abalone have significant changes. In this study, we found that the myofibrillar protein of fresh abalone degraded into peptides during the drying process, which further cross-linked to form a peptide hydrogel during the rehydration and simmering stages, thereby producing a unique viscoelastic candy-like core in candy abalone.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"250 6","pages":"1865 - 1879"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide gelation contributes to the tenderness and viscoelasticity of candy abalone\",\"authors\":\"Yaxian Mo, Jiaqi Ma, Xinyu Zhang, Guanghua Zhao, Jiachen Zang\",\"doi\":\"10.1007/s00217-024-04523-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dried abalones are precious products, in which candy abalone is the most treasured one, owing to its unique taste. After rehydration and simmering, the core part tastes extraordinarily tender and viscoelastic, just like a soft candy which may almost melt in mouth. However, the reason for this has yet to be elucidated. The purpose of this study is to research the formation mechanism of the candy-like core in candy abalone. First of all, we characterized the viscoelasticity, microstructure and protein changes of candy abalone during the simmering process. The texture results indicated that the springiness and adhesiveness of candy abalone showed an increase. Scanning and transmission electron microscopy suggested that myofibrillar protein in candy abalone formed a dense three-dimensional network hydrogel structure. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed such a hydrogel structure might be derived from the degradation of the myofibrillar protein during the drying process. Also, we identified degraded peptides mainly stemmed from paramyosin by mass spectrometry. Moreover, molecular dynamics simulation revealed that the hydrogen bonds and hydrophobic interactions are mainly responsible for the self-assembly of peptides during the rehydration and simmering stages. Different from reported protein hydrogels, the rheological and morphological properties of the formed peptide hydrogels in candy abalone have significant changes. In this study, we found that the myofibrillar protein of fresh abalone degraded into peptides during the drying process, which further cross-linked to form a peptide hydrogel during the rehydration and simmering stages, thereby producing a unique viscoelastic candy-like core in candy abalone.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":549,\"journal\":{\"name\":\"European Food Research and Technology\",\"volume\":\"250 6\",\"pages\":\"1865 - 1879\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Food Research and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00217-024-04523-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-024-04523-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Peptide gelation contributes to the tenderness and viscoelasticity of candy abalone
Dried abalones are precious products, in which candy abalone is the most treasured one, owing to its unique taste. After rehydration and simmering, the core part tastes extraordinarily tender and viscoelastic, just like a soft candy which may almost melt in mouth. However, the reason for this has yet to be elucidated. The purpose of this study is to research the formation mechanism of the candy-like core in candy abalone. First of all, we characterized the viscoelasticity, microstructure and protein changes of candy abalone during the simmering process. The texture results indicated that the springiness and adhesiveness of candy abalone showed an increase. Scanning and transmission electron microscopy suggested that myofibrillar protein in candy abalone formed a dense three-dimensional network hydrogel structure. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed such a hydrogel structure might be derived from the degradation of the myofibrillar protein during the drying process. Also, we identified degraded peptides mainly stemmed from paramyosin by mass spectrometry. Moreover, molecular dynamics simulation revealed that the hydrogen bonds and hydrophobic interactions are mainly responsible for the self-assembly of peptides during the rehydration and simmering stages. Different from reported protein hydrogels, the rheological and morphological properties of the formed peptide hydrogels in candy abalone have significant changes. In this study, we found that the myofibrillar protein of fresh abalone degraded into peptides during the drying process, which further cross-linked to form a peptide hydrogel during the rehydration and simmering stages, thereby producing a unique viscoelastic candy-like core in candy abalone.
期刊介绍:
The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections:
-chemistry and biochemistry-
technology and molecular biotechnology-
nutritional chemistry and toxicology-
analytical and sensory methodologies-
food physics.
Out of the scope of the journal are:
- contributions which are not of international interest or do not have a substantial impact on food sciences,
- submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods,
- contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.