{"title":"使用 IndoBERT 进行交通事故分类","authors":"Muhammad Alwan Naufal, A. S. Girsang","doi":"10.11591/ijict.v13i1.pp42-49","DOIUrl":null,"url":null,"abstract":"Traffic accidents are a widespread concern globally, causing loss of life, injuries, and economic burdens. Efficiently classifying accident types is crucial for effective accident management and prevention. This study proposes a practical approach for traffic accident classification using IndoBERT, a language model specifically trained for Indonesian. The classification task involves sorting accidents into four classes: car accidents, motorcycle accidents, bus accidents, and others. The proposed model achieves a 94% accuracy in categorizing these accidents. To assess its performance, we compared IndoBERT with traditional methods, random forest (RF) and support vector machine (SVM), which achieved accuracy scores of 85% and 87%, respectively. The IndoBERT-based model demonstrates its effectiveness in handling the complexities of the Indonesian language, providing a useful tool for traffic accident classification and contributing to improved accident management and prevention strategies.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"30 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic accident classification using IndoBERT\",\"authors\":\"Muhammad Alwan Naufal, A. S. Girsang\",\"doi\":\"10.11591/ijict.v13i1.pp42-49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic accidents are a widespread concern globally, causing loss of life, injuries, and economic burdens. Efficiently classifying accident types is crucial for effective accident management and prevention. This study proposes a practical approach for traffic accident classification using IndoBERT, a language model specifically trained for Indonesian. The classification task involves sorting accidents into four classes: car accidents, motorcycle accidents, bus accidents, and others. The proposed model achieves a 94% accuracy in categorizing these accidents. To assess its performance, we compared IndoBERT with traditional methods, random forest (RF) and support vector machine (SVM), which achieved accuracy scores of 85% and 87%, respectively. The IndoBERT-based model demonstrates its effectiveness in handling the complexities of the Indonesian language, providing a useful tool for traffic accident classification and contributing to improved accident management and prevention strategies.\",\"PeriodicalId\":245958,\"journal\":{\"name\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"volume\":\"30 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijict.v13i1.pp42-49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijict.v13i1.pp42-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traffic accidents are a widespread concern globally, causing loss of life, injuries, and economic burdens. Efficiently classifying accident types is crucial for effective accident management and prevention. This study proposes a practical approach for traffic accident classification using IndoBERT, a language model specifically trained for Indonesian. The classification task involves sorting accidents into four classes: car accidents, motorcycle accidents, bus accidents, and others. The proposed model achieves a 94% accuracy in categorizing these accidents. To assess its performance, we compared IndoBERT with traditional methods, random forest (RF) and support vector machine (SVM), which achieved accuracy scores of 85% and 87%, respectively. The IndoBERT-based model demonstrates its effectiveness in handling the complexities of the Indonesian language, providing a useful tool for traffic accident classification and contributing to improved accident management and prevention strategies.