Ian Frederick Gazeley, B. Graham, Darryl M. Reynolds, Theresa M. Burg
{"title":"罗斯福麋鹿的保护遗传学:种群隔离和多样性减少","authors":"Ian Frederick Gazeley, B. Graham, Darryl M. Reynolds, Theresa M. Burg","doi":"10.1139/cjz-2023-0178","DOIUrl":null,"url":null,"abstract":"Species reintroductions have the potential to cause genetic bottleneck events resulting in increased genetic drift, increased inbreeding, and reduced genetic diversity creating negative fitness consequences for populations. Roosevelt elk (Cervus canadensis roosevelti Erxleben 1777) are ‘at risk’ in British Columbia (BC), Canada. Once widespread along the west coast, Roosevelt elk were likely extirpated from the mainland by 1900 and experienced a substantial population bottleneck on Vancouver Island at that time, and again in the 1950s. Reintroduced to the mainland from Vancouver Island in the 1980s, this re-established population became the source for subsequent mainland translocations. To understand the effects of reintroduction strategy on genetic diversity, we analyzed genetic variation in 355 Roosevelt elk from Vancouver Island and mainland BC. Using mitochondrial DNA and 10 microsatellite loci, molecular analyses showed overall reduced genetic diversity relative to other extant elk populations, genetic isolation of the southern Vancouver Island population, and increased genetic drift among reintroduced herds. Four reintroduced populations were found to have increased levels of inbreeding. Results of this study contribute to our knowledge of reintroduction biology and can be used to guide continued conservation and management of at-risk species.","PeriodicalId":9484,"journal":{"name":"Canadian Journal of Zoology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation genetics of Roosevelt elk: Population isolation and reduced diversity\",\"authors\":\"Ian Frederick Gazeley, B. Graham, Darryl M. Reynolds, Theresa M. Burg\",\"doi\":\"10.1139/cjz-2023-0178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Species reintroductions have the potential to cause genetic bottleneck events resulting in increased genetic drift, increased inbreeding, and reduced genetic diversity creating negative fitness consequences for populations. Roosevelt elk (Cervus canadensis roosevelti Erxleben 1777) are ‘at risk’ in British Columbia (BC), Canada. Once widespread along the west coast, Roosevelt elk were likely extirpated from the mainland by 1900 and experienced a substantial population bottleneck on Vancouver Island at that time, and again in the 1950s. Reintroduced to the mainland from Vancouver Island in the 1980s, this re-established population became the source for subsequent mainland translocations. To understand the effects of reintroduction strategy on genetic diversity, we analyzed genetic variation in 355 Roosevelt elk from Vancouver Island and mainland BC. Using mitochondrial DNA and 10 microsatellite loci, molecular analyses showed overall reduced genetic diversity relative to other extant elk populations, genetic isolation of the southern Vancouver Island population, and increased genetic drift among reintroduced herds. Four reintroduced populations were found to have increased levels of inbreeding. Results of this study contribute to our knowledge of reintroduction biology and can be used to guide continued conservation and management of at-risk species.\",\"PeriodicalId\":9484,\"journal\":{\"name\":\"Canadian Journal of Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjz-2023-0178\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjz-2023-0178","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
Conservation genetics of Roosevelt elk: Population isolation and reduced diversity
Species reintroductions have the potential to cause genetic bottleneck events resulting in increased genetic drift, increased inbreeding, and reduced genetic diversity creating negative fitness consequences for populations. Roosevelt elk (Cervus canadensis roosevelti Erxleben 1777) are ‘at risk’ in British Columbia (BC), Canada. Once widespread along the west coast, Roosevelt elk were likely extirpated from the mainland by 1900 and experienced a substantial population bottleneck on Vancouver Island at that time, and again in the 1950s. Reintroduced to the mainland from Vancouver Island in the 1980s, this re-established population became the source for subsequent mainland translocations. To understand the effects of reintroduction strategy on genetic diversity, we analyzed genetic variation in 355 Roosevelt elk from Vancouver Island and mainland BC. Using mitochondrial DNA and 10 microsatellite loci, molecular analyses showed overall reduced genetic diversity relative to other extant elk populations, genetic isolation of the southern Vancouver Island population, and increased genetic drift among reintroduced herds. Four reintroduced populations were found to have increased levels of inbreeding. Results of this study contribute to our knowledge of reintroduction biology and can be used to guide continued conservation and management of at-risk species.
期刊介绍:
Published since 1929, the Canadian Journal of Zoology is a monthly journal that reports on primary research contributed by respected international scientists in the broad field of zoology, including behaviour, biochemistry and physiology, developmental biology, ecology, genetics, morphology and ultrastructure, parasitology and pathology, and systematics and evolution. It also invites experts to submit review articles on topics of current interest.